Solution Manual for
 A First Course in Abstract Algebra, with Applications
 Third Edition
 by Joseph J. Rotman
 Exercises for Chapter 1

1.1 True or false with reasons.
(i) There is a largest integer in every nonempty set of negative integers.
Solution. True. If C is a nonempty set of negative integers, then

$$
-C=\{-n: n \in C\}
$$

is a nonempty set of positive integers. If $-a$ is the smallest element of $-C$, which exists by the Least Integer Axiom, then $-a \leq-c$ for all $c \in C$, so that $a \geq c$ for all $c \in C$.
(ii) There is a sequence of 13 consecutive natural numbers containing exactly 2 primes.
Solution. True. The integers 48 through 60 form such a sequence; only 53 and 59 are primes.
(iii) There are at least two primes in any sequence of 7 consecutive natural numbers.
Solution. False. The integers 48 through 54 are 7 consecutive natural numbers, and only 53 is prime.
(iv) Of all the sequences of consecutive natural numbers not containing 2 primes, there is a sequence of shortest length.
Solution. True. The set C consisting of the lengths of such (finite) sequences is a nonempty subset of the natural numbers.
(v) 79 is a prime.

Solution. True. $\sqrt{79}<\sqrt{81}=9$, and 79 is not divisible by 2,3 , 5 , or 7 .
(vi) There exists a sequence of statements $S(1), S(2), \ldots$ with $S(2 n)$ true for all $n \geq 1$ and with $S(2 n-1)$ false for every $n \geq 1$.
Solution. True. Define $S(2 n-1)$ to be the statement $n \neq n$, and define $S(2 n)$ to be the statement $n=n$.
(vii) For all $n \geq 0$, we have $n \leq F_{n}$, where F_{n} is the nth Fibonacci number.

Solution. True. We have $0=F_{0}, 1=F_{1}, 1=F_{2}$, and $2=$ F_{3}. Use the second form of induction with base steps $n=2$ and $n=3$ (verifying the inductive step will show why we choose these numbers). By the inductive hypothesis, $n-2 \leq F_{n-2}$ and $n-1 \leq F_{n-1}$. Hence, $2 n-3 \leq F_{n}$. But $n \leq 2 n-3$ for all $n \geq 3$, as desired.
(viii) If m and n are natural numbers, then ($m n$)! $=m!n!$.

Solution. False. If $m=2=n$, then $(m n)!=24$ and $m!n!=4$.
1.2 (i) For any $n \geq 0$ and any $r \neq 1$, prove that

$$
1+r+r^{2}+r^{3}+\cdots+r^{n}=\left(1-r^{n+1}\right) /(1-r)
$$

Solution. We use induction on $n \geq 1$. When $n=1$, both sides equal $1+r$. For the inductive step, note that

$$
\begin{aligned}
{\left[1+r+r^{2}+r^{3}+\cdots+r^{n}\right]+r^{n+1} } & =\left(1-r^{n+1}\right) /(1-r)+r^{n+1} \\
& =\frac{1-r^{n+1}+(1-r) r^{n+1}}{1-r} \\
& =\frac{1-r^{n+2}}{1-r}
\end{aligned}
$$

(ii) Prove that

$$
1+2+2^{2}+\cdots+2^{n}=2^{n+1}-1
$$

Solution. This is the special case of the geometric series when $r=2$; hence, the sum is $\left(1-2^{n+1}\right) /(1-2)=2^{n+1}-1$. One can also prove this directly, by induction on $n \geq 0$.
1.3 Show, for all $n \geq 1$, that 10^{n} leaves remainder 1 after dividing by 9 .

Solution. This may be rephrased to say that there is an integer q_{n} with $10^{n}=9 q_{n}+1$. If we define $q_{1}=1$, then $10=q_{1}+1$, and so the base step is true.
For the inductive step, there is an integer q_{n} with

$$
\begin{aligned}
10^{n+1}=10 \times 10^{n} & =10\left(9 q_{n}+1\right) \\
& =90 q_{n}+10=9\left(10 q_{n}+1\right)+1
\end{aligned}
$$

Define $q_{n+1}=10 q_{n}+1$, which is an integer.
1.4 Prove that if $0 \leq a \leq b$, then $a^{n} \leq b^{n}$ for all $n \geq 0$.

Solution. Base step. $a^{0}=1=b^{0}$, and so $a^{0} \leq b^{0}$.
Inductive step. The inductive hypothesis is

$$
a^{n} \leq b^{n}
$$

Since a is positive, Theorem 1.4(i) gives $a^{n+1}=a a^{n} \leq a b^{n}$; since b is positive, Theorem 1.4(i) now gives $a b^{n} \leq b b^{n}=b^{n+1}$.
1.5 Prove that $1^{2}+2^{2}+\cdots+n^{2}=\frac{1}{6} n(n+1)(2 n+1)=\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{1}{6} n$.

Solution. The proof is by induction on $n \geq 1$. When $n=1$, the left side is 1 and the right side is $\frac{1}{3}+\frac{1}{2}+\frac{1}{6}=1$.
For the inductive step,

$$
\begin{aligned}
{\left[1^{2}+2^{2}+\cdots+n^{2}\right]+(n+1)^{2} } & =\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{1}{6} n+(n+1)^{2} \\
& =\frac{1}{3}(n+1)^{3}+\frac{1}{2}(n+1)^{2}+\frac{1}{6}(n+1)
\end{aligned}
$$

after some elementary algebraic manipulation.
1.6 Prove that $1^{3}+2^{3}+\cdots+n^{3}=\frac{1}{4} n^{4}+\frac{1}{2} n^{3}+\frac{1}{4} n^{2}$.

Solution. Base step: When $n=1$, both sides equal 1 .
Inductive step:

$$
\left[1^{3}+2^{3}+\cdots+n^{3}\right]+(n+1)^{3}=\frac{1}{4} n^{4}+\frac{1}{2} n^{3}+\frac{1}{4} n^{2}+(n+1)^{3} .
$$

Expanding gives

$$
\frac{1}{4} n^{4}+\frac{3}{2} n^{3}+\frac{13}{4} n^{2}+3 n+1
$$

which is

$$
\frac{1}{4}(n+1)^{4}+\frac{1}{2}(n+1)^{3}+\frac{1}{4}(n+1)^{2} .
$$

1.7 Prove that $1^{4}+2^{4}+\cdots+n^{4}=\frac{1}{5} n^{5}+\frac{1}{2} n^{4}+\frac{1}{3} n^{3}-\frac{1}{30} n$.

Solution. The proof is by induction on $n \geq 1$. If $n-1$, then the left side is 1 , while the right side is $\frac{1}{5}+\frac{1}{2}+\frac{1}{3}-\frac{1}{30}=1$ as well.

For the inductive step,
$\left[1^{4}+2^{4}+\cdots+n^{4}\right]+(n+1)^{4}=\frac{1}{5} n^{5}+\frac{1}{2} n^{4}+\frac{1}{3} n^{3}-\frac{1}{30} n+(n+1)^{4}$.
It is now straightforward to check that this last expression is equal to

$$
\frac{1}{5}(n+1)^{5}+\frac{1}{2}(n+1)^{4}+\frac{1}{3}(n+1)^{3}-\frac{1}{30}(n+1)
$$

1.8 Find a formula for $1+3+5+\cdots+(2 n-1)$, and use mathematical induction to prove that your formula is correct.
Solution. We prove by induction on $n \geq 1$ that the sum is n^{2}.
Base Step. When $n=1$, we interpret the left side to mean 1 . Of course, $1^{2}=1$, and so the base step is true.

Inductive Step.

$$
\begin{aligned}
1+3+5+\cdots+(2 n-1) & +(2 n+1) \\
= & 1+3+5+\cdots+(2 n-1)]+(2 n+1) \\
= & n^{2}+2 n+1 \\
= & (n+1)^{2}
\end{aligned}
$$

