Chapter 2

Fundamentals of Flow in Closed Conduits

2.1. From the given data: $D_{1}=0.1 \mathrm{~m}, D_{2}=0.15 \mathrm{~m}, V_{1}=2 \mathrm{~m} / \mathrm{s}$. Using these data, the following preliminary calculations are useful:

$$
A_{1}=\frac{\pi}{4} D_{1}^{2}=\frac{\pi}{4}(0.1)^{2}=0.007854 \mathrm{~m}^{2}, \quad A_{2}=\frac{\pi}{4} D_{2}^{2}=\frac{\pi}{4}(0.15)^{2}=0.01767 \mathrm{~m}^{2}
$$

Volumetric flow rate, Q, is given by

$$
Q=A_{1} V_{1}=(0.007854)(2)=0.0157 \mathrm{~m}^{3} / \mathrm{s}
$$

According to the continuity equation,

$$
A_{1} V_{1}=A_{2} V_{2}=Q \quad \rightarrow \quad V_{2}=\frac{Q}{A_{2}}=\frac{0.0157}{0.01767}=0.889 \mathrm{~m} / \mathrm{s}
$$

At $20^{\circ} \mathrm{C}$, the density of water, ρ, is $998 \mathrm{~kg} / \mathrm{m}^{3}$, and the mass flow rate, \dot{m}, is given by

$$
\dot{m}=\rho Q=(998)(0.0157)=15.7 \mathrm{~kg} / \mathrm{s}
$$

2.xx From the given data: $D_{1}=0.2 \mathrm{~m}, D_{2}=0.3 \mathrm{~m}$, and $V_{1}=0.75 \mathrm{~m} / \mathrm{s}$. Using these data, the following preliminary calculations are useful:

$$
A_{1}=\frac{\pi}{4} D_{1}^{2}=\frac{\pi}{4}(0.2)^{2}=0.03142 \mathrm{~m}^{2}, \quad A_{2}=\frac{\pi}{4} D_{2}^{2}=\frac{\pi}{4}(0.3)^{2}=0.07069 \mathrm{~m}^{2}
$$

(a) According to the continuity equation,

$$
A_{1} V_{1}=A_{2} V_{2} \quad \rightarrow \quad V_{2}=\frac{A_{1} V_{1}}{A_{2}}=\frac{(0.03142)(0.75)}{0.07069}=0.333 \mathrm{~m} / \mathrm{s}
$$

(b) The volume flow rate, Q, is given by

$$
Q=A_{1} V_{1}=(0.03142)(0.75)=0.02357 \mathrm{~m}^{3} / \mathrm{s}=23.6 \mathrm{~L} / \mathrm{s}
$$

2.2. From the given data: $D_{1}=200 \mathrm{~mm}, D_{2}=100 \mathrm{~mm}, V_{1}=1 \mathrm{~m} / \mathrm{s}$, and

$$
\begin{aligned}
& A_{1}=\frac{\pi}{4} D_{1}^{2}=\frac{\pi}{4}(0.2)^{2}=0.0314 \mathrm{~m}^{2} \\
& A_{2}=\frac{\pi}{4} D_{2}^{2}=\frac{\pi}{4}(0.1)^{2}=0.00785 \mathrm{~m}^{2}
\end{aligned}
$$

The flow rate, Q_{1}, in the $200-\mathrm{mm}$ pipe is given by

$$
Q_{1}=A_{1} V_{1}=(0.0314)(1)=0.0314 \mathrm{~m}^{3} / \mathrm{s}
$$

and hence the flow rate, Q_{2}, in the $100-\mathrm{mm}$ pipe is

$$
Q_{2}=\frac{Q_{1}}{2}=\frac{0.0314}{2}=0.0157 \mathrm{~m}^{3} / \mathrm{s}
$$

The average velocity, V_{2}, in the $100-\mathrm{mm}$ pipe is

$$
V_{2}=\frac{Q_{2}}{A_{2}}=\frac{0.0157}{0.00785}=2 \mathrm{~m} / \mathrm{s}
$$

2.3. The velocity distribution in the pipe is

$$
\begin{equation*}
v(r)=V_{0}\left[1-\left(\frac{r}{R}\right)^{2}\right] \tag{1}
\end{equation*}
$$

and the average velocity, \bar{V}, is defined as

$$
\begin{equation*}
\bar{V}=\frac{1}{A} \int_{A} V d A \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
A=\pi R^{2} \quad \text { and } \quad d A=2 \pi r d r \tag{3}
\end{equation*}
$$

Combining Equations 1 to 3 yields

$$
\begin{aligned}
\bar{V} & =\frac{1}{\pi R^{2}} \int_{0}^{R} V_{0}\left[1-\left(\frac{r}{R}\right)^{2}\right] 2 \pi r d r=\frac{2 V_{0}}{R^{2}}\left[\int_{0}^{R} r d r-\int_{0}^{R} \frac{r^{3}}{R^{2}} d r\right]=\frac{2 V_{0}}{R^{2}}\left[\frac{R^{2}}{2}-\frac{R^{4}}{4 R^{2}}\right] \\
& =\frac{2 V_{0}}{R^{2}} \frac{R^{2}}{4}=\frac{V_{0}}{2}
\end{aligned}
$$

The flow rate, Q, is therefore given by

$$
Q=A \bar{V}=\frac{\pi R^{2} V_{0}}{2}
$$

2.4.

$$
\begin{aligned}
\beta & =\frac{1}{A \bar{V}^{2}} \int_{A} v^{2} d A=\frac{4}{\pi R^{2} V_{0}^{2}} \int_{0}^{R} V_{0}^{2}\left[1-\frac{2 r^{2}}{R^{2}}+\frac{r^{4}}{R^{4}}\right] 2 \pi r d r \\
& =\frac{8}{R^{2}}\left[\int_{0}^{R} r d r-\int_{0}^{R} \frac{2 r^{3}}{R^{2}} d r+\int_{0}^{R} \frac{r^{5}}{R^{4}} d r\right]=\frac{8}{R^{2}}\left[\frac{R^{2}}{2}-\frac{R^{4}}{2 R^{2}}+\frac{R^{6}}{6 R^{4}}\right] \\
& =\frac{4}{3}
\end{aligned}
$$

2.5. $D=0.2 \mathrm{~m}, Q=0.06 \mathrm{~m}^{3} / \mathrm{s}, L=100 \mathrm{~m}, p_{1}=500 \mathrm{kPa}, p_{2}=400 \mathrm{kPa}, \gamma=9.79 \mathrm{kN} / \mathrm{m}^{3}$.

$$
\begin{aligned}
R & =\frac{D}{4}=\frac{0.2}{4}=0.05 \mathrm{~m} \\
\Delta h & =\frac{p_{1}}{\gamma}-\frac{p_{2}}{\gamma}=\frac{500-400}{9.79}=10.2 \mathrm{~m} \\
\tau_{0} & =\frac{\gamma R \Delta h}{L}=\frac{\left(9.79 \times 10^{3}\right)(0.05)(10.2)}{100}=49.9 \mathrm{~N} / \mathrm{m}^{2} \\
A & =\frac{\pi D^{2}}{4}=\frac{\pi(0.2)^{2}}{4}=0.0314 \mathrm{~m}^{2} \\
V & =\frac{Q}{A}=\frac{0.06}{0.0314}=1.91 \mathrm{~m} / \mathrm{s} \\
f & =\frac{8 \tau_{0}}{\rho V^{2}}=\frac{8(49.9)}{(998)(1.91)^{2}}=0.11
\end{aligned}
$$

2.6. $T=20^{\circ} \mathrm{C}, V=2 \mathrm{~m} / \mathrm{s}, D=0.25 \mathrm{~m}$, horizontal pipe, ductile iron. For ductile iron pipe, $k_{\mathrm{s}}=$ 0.26 mm , and

$$
\begin{aligned}
& \frac{k_{\mathrm{s}}}{D}=\frac{0.26}{250}=0.00104 \\
& \operatorname{Re}=\frac{\rho V D}{\mu}=\frac{(998.2)(2)(0.25)}{\left(1.002 \times 10^{-3}\right)}=4.981 \times 10^{5}
\end{aligned}
$$

From the Moody diagram:

$$
\begin{array}{|l|}
\hline f=0.0202 \text { (flow is not fully turbulent) } \\
\hline
\end{array}
$$

Using the Colebrook equation,

$$
\frac{1}{\sqrt{f}}=-2 \log \left(\frac{k_{\mathrm{s}} / D}{3.7}+\frac{2.51}{\operatorname{Re} \sqrt{f}}\right)
$$

Substituting for k_{s} / D and Re gives

$$
\frac{1}{\sqrt{f}}=-2 \log \left(\frac{0.00104}{3.7}+\frac{2.51}{4.981 \times 10^{5} \sqrt{f}}\right)
$$

By trial and error leads to

$$
f=0.0204
$$

Using the Swamee-Jain equation,

$$
\frac{1}{\sqrt{f}}=-2 \log \left[\frac{k_{\mathrm{s}} / D}{3.7}+\frac{5.74}{\mathrm{Re}^{0.9}}\right]=-2 \log \left[\frac{0.00104}{3.7}+\frac{5.74}{\left(4.981 \times 10^{5}\right)^{0.9}}\right]
$$

which leads to

$$
\begin{array}{|l|}
\hline f=0.0205 \\
\hline
\end{array}
$$

The head loss, h_{f}, over 100 m of pipeline is given by

$$
h_{\mathrm{f}}=f \frac{L}{D} \frac{V^{2}}{2 g}=0.0204 \frac{100}{0.25} \frac{(2)^{2}}{2(9.81)}=1.66 \mathrm{~m}
$$

Therefore the pressure drop, Δp, is given by

$$
\Delta p=\gamma h_{\mathrm{f}}=(9.79)(1.66)=16.3 \mathrm{kPa}
$$

If the pipe is 1 m lower at the downstream end, f would not change, but the pressure drop, Δp, would then be given by

$$
\Delta p=\gamma\left(h_{\mathrm{f}}-1.0\right)=9.79(1.66-1)=6.46 \mathrm{kPa}
$$

2.7. From the given data: $D=25 \mathrm{~mm}, k_{\mathrm{s}}=0.1 \mathrm{~mm}, \theta=10^{\circ}, p_{1}=550 \mathrm{kPa}$, and $L=100 \mathrm{~m}$. At $20^{\circ} \mathrm{C}, \nu=1.00 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}, \gamma=9.79 \mathrm{kN} / \mathrm{m}^{3}$, and

$$
\begin{aligned}
\frac{k_{\mathrm{s}}}{D} & =\frac{0.1}{25}=0.004 \\
A & =\frac{\pi}{4} D^{2}=\frac{\pi}{4}(0.025)^{2}=4.909 \times 10^{-4} \mathrm{~m}^{2} \\
h_{\mathrm{f}} & =f \frac{L}{D} \frac{Q^{2}}{2 g A^{2}}=f \frac{100}{0.025} \frac{Q^{2}}{2(9.81)\left(4.909 \times 10^{-4}\right)^{2}}=8.46 \times 10^{8} f Q^{2}
\end{aligned}
$$

The energy equation applied over 100 m of pipe is

$$
\frac{p_{1}}{\gamma}+\frac{V^{2}}{2 g}+z_{1}=\frac{p_{2}}{\gamma}+\frac{V^{2}}{2 g}+z_{2}+h_{\mathrm{f}}
$$

which simplifies to

$$
\begin{aligned}
& p_{2}=p_{1}-\gamma\left(z_{2}-z_{1}\right)-\gamma h_{\mathrm{f}} \\
& p_{2}=550-9.79\left(100 \sin 10^{\circ}\right)-9.79\left(8.46 \times 10^{8} f Q^{2}\right) \\
& p_{2}=380.0-8.28 \times 10^{9} f Q^{2}
\end{aligned}
$$

(a) For $Q=2 \mathrm{~L} / \mathrm{min}=3.333 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{s}$,

$$
\begin{aligned}
V & =\frac{Q}{A}=\frac{3.333 \times 10^{-5}}{4.909 \times 10^{-4}}=0.06790 \mathrm{~m} / \mathrm{s} \\
\operatorname{Re} & =\frac{V D}{\nu}=\frac{(0.06790)(0.025)}{1 \times 10^{-6}}=1698
\end{aligned}
$$

Since $\operatorname{Re}<2000$, the flow is laminar when $Q=2 \mathrm{~L} / \mathrm{min}$. Hence,

$$
\begin{aligned}
f & =\frac{64}{\mathrm{Re}}=\frac{64}{1698}=0.03770 \\
p_{2} & =380.0-8.28 \times 10^{9}(0.03770)\left(3.333 \times 10^{-5}\right)^{2}=380 \mathrm{kPa}
\end{aligned}
$$

Therefore, when the flow is $2 \mathrm{~L} / \mathrm{min}$, the pressure at the downstream section is 380 kPa . For $Q=20 \mathrm{~L} / \mathrm{min}=3.333 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s}$,

$$
V=\frac{Q}{A}=\frac{3.333 \times 10^{-4}}{4.909 \times 10^{-4}}=0.6790 \mathrm{~m} / \mathrm{s}
$$

