CHAPTER 1

The Celestial Sphere

1.1 From Fig. 1.7, Earth makes S / P_{\oplus} orbits about the Sun during the time required for another planet to make S / P orbits. If that other planet is a superior planet then Earth must make one extra trip around the Sun to overtake it, hence

$$
\frac{S}{P_{\oplus}}=\frac{S}{P}+1
$$

Similarly, for an inferior planet, that planet must make the extra trip, or

$$
\frac{S}{P}=\frac{S}{P_{\oplus}}+1
$$

Rearrangement gives Eq. (1.1).
1.2 For an inferior planet at greatest elongation, the positions of Earth (E), the planet (P), and the $\operatorname{Sun}(S)$ form a right triangle $\left(\angle E P S=90^{\circ}\right)$. Thus $\cos (\angle P E S)=\overline{E P} / \overline{E S}$.
From Fig. S1.1, the time required for a superior planet to go from opposition (point P_{1}) to quadrature (P_{2}) can be combined with its sidereal period (from Eq. 1.1) to find the angle $\angle P_{1} S P_{2}$. In the same time interval Earth will have moved through the angle $\angle E_{1} S E_{2}$. Since P_{1}, E_{1}, and S form a straight line, the angle $\angle P_{2} S E_{2}=$ $\angle E_{1} S E_{2}-\angle P_{1} S P_{2}$. Now, using the right triangle at quadrature, $\overline{P_{2} S} / \overline{E_{2} S}=1 / \cos \left(\angle P_{2} S E_{2}\right)$.

Figure S1.1: The relationship between synodic and sidereal periods for superior planets, as discussed in Problem 1.2.
1.3 (a) $P_{\text {Venus }}=224.7 \mathrm{~d}, P_{\text {Mars }}=687.0 \mathrm{~d}$
(b) Pluto. It travels the smallest fraction of its orbit before being "lapped" by Earth.
1.4 Vernal equinox: $\alpha=0^{\mathrm{h}}, \delta=0^{\circ}$

Summer solstice: $\alpha=6^{\mathrm{h}}, \delta=23.5^{\circ}$
Autumnal equinox: $\alpha=12^{\mathrm{h}}, \delta=0^{\circ}$
Winter solstice: $\alpha=18^{\mathrm{h}}, \delta=-23.5^{\circ}$
1.5 (a) $\left(90^{\circ}-42^{\circ}\right)+23.5^{\circ}=71.5^{\circ}$
(b) $\left(90^{\circ}-42^{\circ}\right)-23.5^{\circ}=24.5^{\circ}$
1.6 (a) $90^{\circ}-L<\delta<90^{\circ}$
(b) $L>66.5^{\circ}$
(c) Strictly speaking, only at $L= \pm 90^{\circ}$. The Sun will move along the horizon at these latitudes.
1.7 (a) Both the year 2000 and the year 2004 were leap years, so each had 366 days. Therefore, the number of days between January 1, 2000 and January 1, 2006 is 2192 days. From January 1, 2006 to July 14, 2006 there are 194 days. Finally, from noon on July 14, 2006 to $16: 15$ UT is 4.25 hours, or 0.177 days. Thus, July 14, 2006 at 16:15 UT is JD 2453931.177.
(b) MJD 53930.677.
1.8 (a) $\Delta \alpha=9^{\mathrm{m}} 53.55^{\mathrm{s}}=2.4731^{\circ}, \Delta \delta=2^{\circ} 9^{\prime} 16.2^{\prime \prime}=2.1545^{\circ}$. From Eq. (1.8), $\Delta \theta=2.435^{\circ}$.
(b) $d=r \Delta \theta=1.7 \times 10^{15} \mathrm{~m}=11,400 \mathrm{AU}$.
1.9 (a) From Eqs. (1.2) and (1.3), $\Delta \alpha=0.193628^{\circ}=0.774512^{\mathrm{m}}$ and $\Delta \delta=-0.044211^{\circ}=-2.65266^{\prime}$. This gives the 2010.0 precessed coordinates as $\alpha=14^{\mathrm{h}} 30^{\mathrm{m}} 29.4^{\mathrm{s}}, \delta=-62^{\circ} 43^{\prime} 25.26^{\prime \prime}$.
(b) From Eqs. (1.6) and (1.7), $\Delta \alpha=-5.46^{\mathrm{s}}$ and $\Delta \delta=7.984^{\prime \prime}$.
(c) Precession makes the largest contribution.
1.10 In January the Sun is at a right ascension of approximately 19^{h}. This implies that a right ascension of roughly 7^{h} is crossing the meridian at midnight. With about 14 hours of darkness this would imply observations of objects between right ascensions of 0 h and 14 h would be crossing the meridian during the course of the night (sunset to sunrise).
1.11 Using the identities, $\cos \left(90^{\circ}-t\right)=\sin t$ and $\sin \left(90^{\circ}-t\right)=\cos t$, together with the small-angle approximations $\cos \Delta \theta \approx 1$ and $\sin \Delta \theta \approx 1$, the expression immediately reduces to

$$
\sin (\delta+\Delta \delta)=\sin \delta+\Delta \theta \cos \delta \cos \theta
$$

Using the identity $\sin (a+b)=\sin a \cos b+\cos a \sin b$, the expression now becomes

$$
\sin \delta \cos \Delta \delta+\cos \delta \sin \Delta \delta=\sin \delta+\Delta \theta \cos \delta \cos \theta
$$

Assuming that $\cos \Delta \delta \approx 1$ and $\sin \Delta \delta \approx \Delta \delta$, Eq. (1.7) is obtained.

CHAPTER 2

Celestial Mechanics

2.1 From Fig. 2.4, note that

$$
r^{2}=(x-a e)^{2}+y^{2} \quad \text { and } \quad r^{\prime 2}=(x+a e)^{2}+y^{2}
$$

Substituting Eq. (2.1) into the second expression gives

$$
r=2 a-\sqrt{(x+a e)^{2}+y^{2}}
$$

which is now substituted into the first expression. After some rearrangement,

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}\left(1-e^{2}\right)}=1
$$

Finally, from Eq. (2.2),

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

2.2 The area integral in Cartesian coordinates is given by

$$
A=\int_{-a}^{a} \int_{-b \sqrt{1-x^{2} / a^{2}}}^{b \sqrt{1-x^{2} / a^{2}}} d y d x=\frac{2 b}{a} \int_{-a}^{a} \sqrt{a^{2}-x^{2}} d x=\pi a b
$$

2.3 (a) From Eq. (2.3) the radial velocity is given by

$$
\begin{equation*}
v_{r}=\frac{d r}{d t}=\frac{a\left(1-e^{2}\right)}{(1+e \cos \theta)^{2}} e \sin \theta \frac{d \theta}{d t} \tag{S2.1}
\end{equation*}
$$

Using Eqs. (2.31) and (2.32)

$$
\frac{d \theta}{d t}=\frac{2}{r^{2}} \frac{d A}{d t}=\frac{L}{\mu r^{2}}
$$

The angular momentum can be written in terms of the orbital period by integrating Kepler's second law. If we further substitute $A=\pi a b$ and $b=a\left(1-e^{2}\right)^{1 / 2}$ then

$$
L=2 \mu \pi a^{2}\left(1-e^{2}\right)^{1 / 2} / P
$$

Substituting L and r into the expression for $d \theta / d t$ gives

$$
\frac{d \theta}{d t}=\frac{2 \pi(1+e \cos \theta)^{2}}{P\left(1-e^{2}\right)^{3 / 2}}
$$

This can now be used in Eq. (S2.1), which simplifies to

$$
v_{r}=\frac{2 \pi a e \sin \theta}{P\left(1-e^{2}\right)^{1 / 2}}
$$

Similarly, for the transverse velocity

$$
v_{\theta}=r \frac{d \theta}{d t}=\frac{2 \pi a(1+e \cos \theta)}{\left(1-e^{2}\right)^{1 / 2} P}
$$

