Challenge Problems

Chapter 3	A Click here for answers.	S Click here for solutions.
Æ	 (a) Find the domain of the function f(x) = √1 - √2 - √3 - x. (b) Find f'(x). (c) Check your work in parts (a) and (b) by graphing f and f' on the same screen. 	
Chapter 4	A Click here for answers.	S Click here for solutions.
	1. Find the absolute maximum value of the function	
	$f(x) = \frac{1}{1+ x } + \frac{1}{1+ x-2 }$	
C D D B FIGURE FOR PROBLEM 2	2. (a) Let <i>ABC</i> be a triangle with right angle <i>A</i> and hypotenuse $a = BC $. (See the figure.) If the inscribed circle touches the hypotenuse at <i>D</i> , show that	
	<i>CD</i> =	$= \frac{1}{2} \left(\left BC \right + \left AC \right - \left AB \right \right)$
	(b) If $\theta = \frac{1}{2} \angle C$, express the radius <i>r</i> of the inscribed circle in terms of <i>a</i> and θ . (c) If <i>a</i> is fixed and θ varies, find the maximum value of <i>r</i> .	
	 3. A triangle with sides a, b, and c varies with time t, but its area never changes. Let θ be the angle opposite the side of length a and suppose θ always remains acute. (a) Express dθ/dt in terms of b, c, θ, db/dt, and dc/dt. (b) Express da/dt in terms of the quantities in part (a). 	
III Chapter S	A Click here for answers.	S Click here for solutions.
	 In Sections 5.1 and 5.2 we used the formulas for the sums of the <i>k</i>th powers of the first <i>n</i> integers when <i>k</i> = 1, 2, and 3. (These formulas are proved in Appendix E.) In this problem we derive formulas for any <i>k</i>. These formulas were first published in 1713 by the Swiss mathematician James Bernoulli in his book <i>Ars Conjectandi</i>. (a) The Bernoulli polynomials B_n are defined by B₀(x) = 1, B'_n(x) = B_{n-1}(x), and ∫₀¹ B_n(x) dx = 0 for n = 1, 2, 3, Find B_n(x) for n = 1, 2, 3, and 4. (b) Use the Fundamental Theorem of Calculus to show that B_n(0) = B_n(1) for n ≥ 2. (c) If we introduce the Bernoulli numbers b_n = n! B_n(0), then we can write 	
	$B_0(x) = b_0$	$B_1(x) = \frac{x}{1!} + \frac{b_1}{1!}$
	$B_2(x) = \frac{x^2}{2!} + \frac{b_1}{1!} \frac{x}{1!} + \frac{b_2}{2!}$	$B_3(x) = \frac{x^3}{3!} + \frac{b_1}{1!} \frac{x^2}{2!} + \frac{b_2}{2!} \frac{x}{1!} + \frac{b_3}{3!}$
and, in general,		
	$B_n(x) = \frac{1}{n!} \sum_{k=0}^n \binom{n}{k} k$	$p_k x^{n-k}$ where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

[The numbers $\binom{n}{k}$ are the binomial coefficients.] Use part (b) to show that, for $n \ge 2$,

$$b_n = \sum_{k=0}^n \binom{n}{k} b_k$$