
Chapter 2

Solving Linear Systems

Section 2.1, p. 94

2. (a) Possible answer:

−1r1 → r1

3r1 + r2 → r2

−4r1 + r3 → r3

2r2 + r3 → r3

⎡⎣1 −1 1 0 −3
0 1 4 1 1
0 0 0 0 0

⎤⎦

(b) Possible answer:

2r1 + r2 → r2

−4r1 + r3 → r3

r2 + r3 → r3
1
6r3 → r3

⎡⎣1 1 −4
0 1 2
0 0 1

⎤⎦

4. (a)
3r3 + r1 → r1

−r3 + r2 → r2

⎡⎢⎢⎣
1 0 0 8
0 1 0 −1
0 0 1 2
0 0 0 0

⎤⎥⎥⎦ (b) −3r2 + r1 → r1

⎡⎣1 0 0 −1 4
0 1 0 1 0
0 0 1 −1 0

⎤⎦

6. (a)

−r1 → r1

−2r1 + r2 → r2

−2r1 + r3 → r3
1
2r2 → r2

−3r3 → r3
4
3r3 + r2 → r2

−5r3 + r1 → r1

2r2 + r1 → r1

I3 (b)

−3r1 + r2 → r2

−5r1 + r3 → r3

2r1 + r4 → r4

−r2 + r3 → r3

−r2 + r1 → r1

⎡⎢⎢⎣
1 0 −3
0 1 2
0 0 0
0 0 0

⎤⎥⎥⎦

8. (a) REF (b) RREF (c) N

9. Consider the columns of A which contain leading entries of nonzero rows of A. If this set of columns is
the entire set of n columns, then A = In. Otherwise there are fewer than n leading entries, and hence
fewer than n nonzero rows of A.

10. (a) A is row equivalent to itself: the sequence of operations is the empty sequence.

(b) Each elementary row operation of types I, II or III has a corresponding inverse operation of the
same type which “undoes” the effect of the original operation. For example, the inverse of the
operation “add d times row r of A to row s of A” is “subtract d times row r of A from row s of
A.” Since B is assumed row equivalent to A, there is a sequence of elementary row operations
which gets from A to B. Take those operations in the reverse order, and for each operation do its
inverse, and that takes B to A. Thus A is row equivalent to B.

(c) Follow the operations which take A to B with those which take B to C.
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28 Chapter 2

12. (a)

⎡⎣1 0 0 0 0
2 1 0 0 0
3 5

3 1 0 0

⎤⎦ (b)

⎡⎣1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

⎤⎦
Section 2.2, p. 113

2. (a) x = −6 − s − t, y = s, z = t, w = 5.

(b) x = −3, y = −2, z = 1.

4. (a) x = 5 + 2t, y = 2 − t, z = t.

(b) x = 1, y = 2, z = 4 + t, w = t.

6. (a) x = −2 + r, y = −1, z = 8 − 2r, x4 = r, where r is any real number.

(b) x = 1, y = 2
3 , z = −2

3 .

(c) No solution.

8. (a) x = 1 − r, y = 2, z = 1, x4 = r, where r is any real number.

(b) x = 1 − r, y = 2 + r, z = −1 + r, x4 = r, where r is any real number.

10. x =
[
r

0

]
, where r �= 0.

12. x =

⎡⎢⎢⎢⎣
−1

4r

1
4r

r

⎤⎥⎥⎥⎦, where r �= 0.

14. (a) a = −2. (b) a �= ±2. (c) a = 2.

16. (a) a = ±
√

6. (b) a �= ±
√

6.

18. The augmented matrix is
[

a b 0
c d 0

]
. If we reduce this matrix to reduced row echelon form, we see

that the linear system has only the trivial solution if and only if A is row equivalent to I2. Now show
that this occurs if and only if ad − bc �= 0. If ad − bc �= 0 then at least one of a or c is �= 0, and it is a
routine matter to show that A is row equivalent to I2. If ad − bc = 0, then by case considerations we
find that A is row equivalent to a matrix that has a row or column consisting entirely of zeros, so that
A is not row equivalent to I2.

Alternate proof: If ad − bc �= 0, then A is nonsingular, so the only solution is the trivial one. If
ad − bc = 0, then ad = bc. If ad = 0 then either a or d = 0, say a = 0. Then bc = 0, and either b
or c = 0. In any of these cases we get a nontrivial solution. If ad �= 0, then a

c = b
d , and the second

equation is a multiple of the first one so we again have a nontrivial solution.

19. This had to be shown in the first proof of Exercise 18 above. If the alternate proof of Exercise 18 was
given, then Exercise 19 follows from the former by noting that the homogeneous system Ax = 0 has
only the trivial solution if and only if A is row equivalent to I2 and this occurs if and only if ad−bc �= 0.

20.

⎡⎢⎣
3
2

−2
0

⎤⎥⎦ +

⎡⎢⎣−1
1
0

⎤⎥⎦ t, where t is any number.

22. −a + b + c = 0.

24. (a) Change “row” to “column.”

(b) Proceed as in the proof of Theorem 2.1, changing “row” to “column.”
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Section 2.2 29

25. Using Exercise 24(b) we can assume that every m × n matrix A is column equivalent to a matrix in
column echelon form. That is, A is column equivalent to a matrix B that satisfies the following:

(a) All columns consisting entirely of zeros, if any, are at the right side of the matrix.

(b) The first nonzero entry in each column that is not all zeros is a 1, called the leading entry of the
column.

(c) If the columns j and j + 1 are two successive columns that are not all zeros, then the leading
entry of column j + 1 is below the leading entry of column j.

We start with matrix B and show that it is possible to find a matrix C that is column equivalent to B
that satisfies

(d) If a row contains a leading entry of some column then all other entries in that row are zero.

If column j of B contains a nonzero element, then its first (counting top to bottom) nonzero element
is a 1. Suppose the 1 appears in row rj . We can perform column operations of the form acj + ck for
each of the nonzero columns ck of B such that the resulting matrix has row rj with a 1 in the (rj , j)
entry and zeros everywhere else. This can be done for each column that contains a nonzero entry hence
we can produce a matrix C satisfying (d). It follows that C is the unique matrix in reduced column
echelon form and column equivalent to the original matrix A.

26. −3a − b + c = 0.

28. Apply Exercise 18 to the linear system given here. The coefficient matrix is[
a − r d

c b − r

]
.

Hence from Exercise 18, we have a nontrivial solution if and only if (a − r)(b − r) − cd = 0.

29. (a) A(xp + xh) = Axp + Axh = b + 0 = b.

(b) Let xp be a particular solution to Ax = b and let x be any solution to Ax = b. Let xh = x−xp.
Then x = xp + xh = xp + (x − xp) and Axh = A(x − xp) = Ax − Axp = b − b = 0. Thus xh is
in fact a solution to Ax = 0.

30. (a) 3x2 + 2 (b) 2x2 − x − 1

32. 3
2x2 − x + 1

2 .

34. (a) x = 0, y = 0 (b) x = 5, y = −7

36. r = 5, r2 = 5.

37. The GPS receiver is located at the tangent point where the two circles intersect.

38. 4Fe + 3O2 → 2Fe2O3

40. x =
[

0
1
4 − 1

4 i

]
.

42. No solution.
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30 Chapter 1

Section 2.3, p. 124

1. The elementary matrix E which results from In by a type I interchange of the ith and jth row differs
from In by having 1’s in the (i, j) and (j, i) positions and 0’s in the (i, i) and (j, j) positions. For that
E, EA has as its ith row the jth row of A and for its jth row the ith row of A.

The elementary matrix E which results from In by a type II operation differs from In by having c �= 0
in the (i, i) position. Then EA has as its ith row c times the ith row of A.

The elementary matrix E which results from In by a type III operation differs from In by having c in
the (j, i) position. Then EA has as jth row the sum of the jth row of A and c times the ith row of A.

2. (a)

⎡⎢⎢⎣
1 0 0 0
0 −2 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦. (b)

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 3 1

⎤⎥⎥⎦. (c)

⎡⎢⎢⎣
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎤⎥⎥⎦.

4. (a) Add 2 times row 1 to row 3:

⎡⎣ 1 0 0
0 1 0

−2 0 1

⎤⎦ →

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ = C

(b) Add 2 times row 1 to row 3:

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ →

⎡⎣1 0 0
0 1 0
2 0 1

⎤⎦ = B

(c) AB =

⎡⎣ 1 0 0
0 1 0

−2 0 1

⎤⎦⎡⎣1 0 0
0 1 0
2 0 1

⎤⎦ =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦.

BA =

⎡⎣1 0 0
0 1 0
2 0 1

⎤⎦⎡⎣ 1 0 0
0 1 0

−2 0 1

⎤⎦ =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦.

Therefore B is the inverse of A.

6. If E1 is an elementary matrix of type I then E−1
1 = E1. Let E2 be obtained from In by multiplying

the ith row of In by c �= 0. Let E∗
2 be obtained from In by multiplying the ith row of In by 1

c . Then
E2E

∗
2 = In. Let E3 be obtained from In by adding c times the ith row of In to the jth row of In. Let

E∗
3 be obtained from In by adding −c times the ith row of In to the jth row of In. Then E3E

∗
3 = In.

8. A−1 =

⎡⎢⎢⎢⎣
1 −1 0
3
2

1
2 − 3

2

−1 0 1

⎤⎥⎥⎥⎦.

10. (a) Singular. (b)

⎡⎢⎢⎢⎣
1 −1 0

1 −2 1

−3
2

5
2 − 1

2

⎤⎥⎥⎥⎦. (c)

⎡⎢⎢⎢⎣
−1 3

2
1
2

1 − 3
2

1
2

0 1
2 − 1

2

⎤⎥⎥⎥⎦. (d)

⎡⎢⎢⎢⎣
3
5 − 3

5 − 1
5

2
5

3
5 − 4

5

− 1
5

1
5

2
5

⎤⎥⎥⎥⎦.

12. (a) A−1 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 −1 0 −1

0 −1
2 0 0

− 1
5 1 1

5
3
5

2
5 − 1

2 − 2
5 − 1

5

⎤⎥⎥⎥⎥⎥⎥⎦. (b) Singular.
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Section 2.3 31

14. A is row equivalent to I3; a possible answer is

A =

⎡⎣1 2 3
0 1 2
1 0 3

⎤⎦ =

⎡⎣1 0 0
0 1 0
1 0 1

⎤⎦⎡⎣1 2 0
0 1 0
0 0 1

⎤⎦⎡⎣1 0 0
0 1 0
0 −2 1

⎤⎦⎡⎣1 0 0
0 1 0
0 0 4

⎤⎦⎡⎣1 0 0
0 1 2
0 0 1

⎤⎦⎡⎣1 0 −1
0 1 0
0 0 1

⎤⎦ .

16. A =

⎡⎢⎢⎢⎣
3
2 −1 1

2

1
2 0 − 1

2

−1 1 0

⎤⎥⎥⎥⎦.

18. (b) and (c).

20. For a = −1 or a = 3.

21. This follows directly from Exercise 19 of Section 2.1 and Corollary 2.2. To show that

A−1 =
1

ad − bc

[
d −b

−c a

]
we proceed as follows:

1
ad − bc

[
d −b

−c a

] [
a b

c d

]
=

1
ad − bc

[
ad − bc db − bd

−ca + ac −bc + ad

]
=

[
1 0
0 1

]
.

22. (a)

⎡⎣1 0 0
0 1 0
0 0 −3

⎤⎦. (b)

⎡⎣1 0 0
0 1 0
0 1 0

⎤⎦. (c)

⎡⎣1 0 −5
0 1 0
0 0 1

⎤⎦.

23. The matrices A and B are row equivalent if and only if B = EkEk−1 · · ·E2E1A.
Let P = EkEk−1 · · ·E2E1.

24. If A and B are row equivalent then B = PA, where P is nonsingular, and A = P−1B (Exercise 23). If
A is nonsingular then B is nonsingular, and conversely.

25. Suppose B is singular. Then by Theorem 2.9 there exists x �= 0 such that Bx = 0. Then (AB)x =
A0 = 0, which means that the homogeneous system (AB)x = 0 has a nontrivial solution. Theorem
2.9 implies that AB is singular, a contradiction. Hence, B is nonsingular. Since A = (AB)B−1 is a
product of nonsingular matrices, it follows that A is nonsingular.

Alternate Proof: If AB is nonsingular it follows that AB is row equivalent to In, so P (AB) = In. Since
P is nonsingular, P = EkEk−1 · · ·E2E1. Then (PA)B = In or (EkEk−1 · · ·E2E1A)B = In. Letting
EkEk−1 · · ·E2E1A = C, we have CB = In, which implies that B is nonsingular. Since PAB = In,
A = P−1B−1, so A is nonsingular.

26. The matrix A is row equivalent to O if and only if A = PO = O where P is nonsingular.

27. The matrix A is row equivalent to B if and only if B = PA, where P is a nonsingular matrix. Now
BT = AT PT , so A is row equivalent to B if and only if AT is column equivalent to BT .

28. If A has a row of zeros, then A cannot be row equivalent to In, and so by Corollary 2.2, A is singular.
If the jth column of A is the zero column, then the homogeneous system Ax = 0 has a nontrivial
solution, the vector x with 1 in the jth entry and zeros elsewhere. By Theorem 2.9, A is singular.

29. (a) No. Let A =
[
1 0
0 0

]
, B =

[
0 0
0 1

]
. Then (A + B)−1 exists but A−1 and B−1 do not. Even

supposing they all exist, equality need not hold. Let A =
[
1
]
, B =

[
2
]

so (A + B)−1 =
[

1
3

]
�=[

1
]
+

[
1
2

]
= A−1 + B−1.
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32 Chapter 1

(b) Yes, for A nonsingular and r �= 0.

(rA)
[
1
r
A−1

]
= r

[
1
r

]
A · A−1 = 1 · In = In.

30. Suppose that A is nonsingular. Then Ax = b has the solution x = A−1b for every n × 1 matrix b.
Conversely, suppose that Ax = b is consistent for every n × 1 matrix b. Letting b be the matrices

e1 =

⎡⎢⎢⎢⎢⎢⎢⎣
1
0
...

0

⎤⎥⎥⎥⎥⎥⎥⎦ , e2 =

⎡⎢⎢⎢⎢⎢⎢⎣
0
1
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎦ , . . . , en =

⎡⎢⎢⎢⎢⎢⎢⎣
0
0
...
0
1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

we see that we have solutions x1,x2, . . . ,xn to the linear systems

Ax1 = e1, Ax2 = e2, . . . , Axn = en. (∗)

Letting C be the matrix whose jth column is xj , we can write the n systems in (∗) as AC = In, since
In =

[
e1 e2 · · · en

]
. Hence, A is nonsingular.

31. We consider the case that A is nonsingular and upper triangular. A similar argument can be given for
A lower triangular.

By Theorem 2.8, A is a product of elementary matrices which are the inverses of the elementary
matrices that “reduce” A to In. That is,

A = E−1
1 · · ·E−1

k .

The elementary matrix Ei will be upper triangular since it is used to introduce zeros into the upper
triangular part of A in the reduction process. The inverse of Ei is an elementary matrix of the same
type and also an upper triangular matrix. Since the product of upper triangular matrices is upper
triangular and we have A−1 = Ek · · ·E1 we conclude that A−1 is upper triangular.

Section 2.4, p. 129

1. See the answer to Exercise 4, Section 2.1. Where it mentions only row operations, now read “row and
column operations”.

2. (a)
[
I4

0

]
. (b) I3. (c)

[
I2 0
0 0

]
. (d) I4.

4. Allowable equivalence operations (“elementary row or elementary column operation”) include in par-
ticular elementary row operations.

5. A and B are equivalent if and only if B = Et · · ·E2E1AF1F2 · · ·Fs. Let EtEt−1 · · ·E2E1 = P and
F1F2 · · ·Fs = Q.

6. B =
[
I2 0
0 0

]
; a possible answer is: B =

⎡⎣−1 2 0
1 −1 0

−1 1 1

⎤⎦A

⎡⎣1 0 −1
0 1 −1
0 0 1

⎤⎦.

8. Suppose A were nonzero but equivalent to O. Then some ultimate elementary row or column operation
must have transformed a nonzero matrix Ar into the zero matrix O. By considering the types of
elementary operations we see that this is impossible.
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9. Replace “row” by “column” and vice versa in the elementary operations which transform A into B.

10. Possible answers are:

(a)

⎡⎣1 −2 3 0
0 −1 4 3
0 2 −5 −2

⎤⎦. (b)
[
1 0
0 0

]
. (c)

⎡⎣1 0 0 0 0
0 1 −2 0 2
0 5 5 4 4

⎤⎦.

11. If A and B are equivalent then B = PAQ and A = P−1BQ−1. If A is nonsingular then B is nonsingular,
and conversely.

Section 2.5, p. 136

2. x =

⎡⎣ 0
−2

3

⎤⎦.

4. x =

⎡⎢⎢⎣
2

−1
0
5

⎤⎥⎥⎦.

6. L =

⎡⎣ 1 0 0
4 1 0

−5 3 1

⎤⎦, U =

⎡⎣−3 1 −2
0 6 2
0 0 −4

⎤⎦, x =

⎡⎣−3
4

−1

⎤⎦.

8. L =

⎡⎢⎢⎣
1 0 0 0
6 1 0 0

−1 2 1 0
−2 3 2 1

⎤⎥⎥⎦, U =

⎡⎢⎢⎣
−5 4 0 1

0 3 2 1
0 0 −4 1
0 0 0 −2

⎤⎥⎥⎦, x =

⎡⎢⎢⎣
1

−2
5

−4

⎤⎥⎥⎦.

10. L =

⎡⎢⎢⎣
1 0 0 0

0.2 1 0 0
−0.4 0.8 1 0

2 −1.2 −0.4 1

⎤⎥⎥⎦, U =

⎡⎢⎢⎣
4 1 0.25 −0.5
0 0.4 1.2 −2.5
0 0 −0.85 2
0 0 0 −2.5

⎤⎥⎥⎦, x =

⎡⎢⎢⎣
−1.5

4.2
2.6
−2

⎤⎥⎥⎦.

Supplementary Exercises for Chapter 2, p. 137

2. (a) a = −4 or a = 2.

(b) The system has a solution for each value of a.

4. c + 2a − 3b = 0.

5. (a) Multiply the jth row of B by 1
k .

(b) Interchange the ith and jth rows of B.

(c) Add −k times the jth row of B to its ith row.

6. (a) If we transform E1 to reduced row echelon form, we obtain In. Hence E1 is row equivalent to In

and thus is nonsingular.

(b) If we transform E2 to reduced row echelon form, we obtain In. Hence E2 is row equivalent to In

and thus is nonsingular.
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(c) If we transform E3 to reduced row echelon form, we obtain In. Hence E3 is row equivalent to In

and thus is nonsingular.

8.

⎡⎢⎢⎣
1 −a a2 −a3

0 1 −a a2

0 0 1 −a

0 0 0 1

⎤⎥⎥⎦.

10. (a)

⎡⎣−41
47

−35

⎤⎦. (b)

⎡⎣ 83
−45
−62

⎤⎦.

12. s �= 0, ±
√

2.

13. For any angle θ, cos θ and sin θ are never simultaneously zero. Thus at least one element in column 1
is not zero. Assume cos θ �= 0. (If cos θ = 0, then interchange rows 1 and 2 and proceed in a similar
manner to that described below.) To show that the matrix is nonsingular and determine its inverse,
we put [

cos θ sin θ 1 0
− sin θ cos θ 0 1

]
into reduced row echelon form. Apply row operations 1

cos θ times row 1 and sin θ times row 1 added to
row 2 to obtain ⎡⎢⎢⎢⎢⎢⎣

1
sin θ

cos θ

1
cos θ

0

0
sin2 θ

cos θ
+ cos θ

sin θ

cos θ
1

⎤⎥⎥⎥⎥⎥⎦ .

Since

sin2 θ

cos θ
+ cos θ =

sin2 θ + cos2 θ

cos θ
=

1
cos θ

,

the (2, 2)-element is not zero. Applying row operations cos θ times row 2 and
(
− sin θ

cos θ

)
times row 2

added to row 1 we obtain [
1 0 cos θ − sin θ

0 1 sin θ cos θ

]
.

It follows that the matrix is nonsingular and its inverse is[
cos θ − sin θ
sin θ cos θ

]
.

14. (a) A(u + v) = Au + Av = 0 + 0 = 0.

(b) A(u − v) = Au − Av = 0 − 0 = 0.

(c) A(ru) = r(Au) = r0 = 0.

(d) A(ru + sv) = r(Au) + s(Av) = r0 + s0 = 0.

15. If Au = b and Av = b, then A(u − v) = Au − Av = b − b = 0.
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16. Suppose at some point in the process of reducing the augmented matrix to reduced row echelon form
we encounter a row whose first n entries are zero but whose (n+1)st entry is some number c �= 0. The
corresponding linear equation is

0 · x1 + · · · + 0 · xn = c or 0 = c.

This equation has no solution, thus the linear system is inconsistent.

17. Let u be one solution to Ax = b. Since A is singular, the homogeneous system Ax = 0 has a nontrivial
solution u0. Then for any real number r, v = ru0 is also a solution to the homogeneous system. Finally,
by Exercise 29, Sec. 2.2, for each of the infinitely many vectors v, the vector w = u + v is a solution
to the nonhomogeneous system Ax = b.

18. s = 1, t = 1.

20. If any of the diagonal entries of L or U is zero, there will not be a unique solution.

21. The outer product of X and Y can be written in the form

XY T =

⎡⎢⎢⎢⎢⎣
x1

[
y1 y2 · · · yn

]
x2

[
y1 y2 · · · yn

]
...

xn

[
y1 y2 · · · yn

]

⎤⎥⎥⎥⎥⎦ .

If either X = O or Y = O, then XY T = O. Thus assume that there is at least one nonzero component
in X, say xi, and at least one nonzero component in Y , say yj . Then

(
1
xi

)
Rowi(XY T ) makes the ith

row exactly Y T . Since all the other rows are multiples of Y T , row operations of the form −xkRi + Rp,
for p �= i, can be performed to zero out everything but the ith row. It follows that either XY T is row
equivalent to O or to a matrix with n − 1 zero rows.

Chapter Review for Chapter 2, p. 138

True or False
1. False. 2. True. 3. False. 4. True. 5. True.
6. True. 7. True. 8. True. 9. True. 10. False.

Quiz

1.

⎡⎣1 0 2
0 1 3
0 0 0

⎤⎦
2. (a) No.

(b) Infinitely many.

(c) No.

(d) x =

⎡⎢⎢⎣
−6 + 2r + 7s

r

−3s

s

⎤⎥⎥⎦, where r and s are any real numbers.

3. k = 6.
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4.

⎡⎣0
0
0

⎤⎦.

5.

⎡⎢⎣−1
2

1
2

1
2

1 −1 0
−1

2
3
2 − 1

2

⎤⎥⎦.

6. P = A−1, Q = B.

7. Possible answers: Diagonal, zero, or symmetric.
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