Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permission Department, John Wiley \& Sons, Inc, 111 River Street, Hoboken, NJ 07030.

Chapter 1

1-1 (a) $98 \mathrm{Btu} /(\mathrm{hr}-\mathrm{ft}-\mathrm{F}) \times 1.7307=170 \mathrm{~W} /(\mathrm{m}-\mathrm{K})$
(b) $0.24 \mathrm{Btu} /(\mathrm{Ibm}-\mathrm{F}) \times 4186.8=1.0 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$
(c) $\frac{0.04 \mathrm{lbm} /(\mathrm{ft}-\mathrm{hr})}{3600 \mathrm{sec} / \mathrm{hr}} \times 1.488=16.5 \frac{\mu \mathrm{Ns}}{\mathrm{m}^{2}}$
(d) $1050 \frac{\mathrm{Btu}}{\mathrm{Ibm}} \times \frac{1}{9.48 \times 10^{-4}} \frac{\mathrm{~J}}{\mathrm{Btu}} \times \frac{2.20462 \mathrm{Ibm}}{\mathrm{kg}}=2.44 \frac{\mathrm{MJ}}{\mathrm{kg}}$
(e) $12,000 \frac{\mathrm{Btu}}{\mathrm{lbm}} \times \frac{1}{3.412}=3.52 \mathrm{~kW}$
(f) $14.7 \frac{\mathrm{lbf}}{\mathrm{in}^{2}} \times 6894.76=101 \mathrm{kPa}$

1-2 (a) $120 \mathrm{kPa} \times \frac{\mathrm{lbf} / \mathrm{in}^{2}}{6.89476 \mathrm{kPa}}=17.4 \mathrm{lbf} / \mathrm{in}^{2}$
(b) $100 \frac{\mathrm{~W}}{\mathrm{~m}-\mathrm{K}} \times 0.5778=57.8 \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}-\mathrm{F}$
(c) $0.8 \frac{\mathrm{~W}}{\mathrm{~m}^{2}-\mathrm{K}} \times 0.1761=0.14 \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2}-\mathrm{F}$
(d) $10^{-6} \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2} \times \frac{1}{1.488}=6.7 \times 10^{-7} \frac{\mathrm{lbm}}{\mathrm{ft}-\mathrm{sec}}$
(e) $1200 \mathrm{~kW} \times 3412=4.1 \times 10^{-6} \mathrm{Btu} / \mathrm{hr}$
(f) $1000 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \times \frac{1 \mathrm{Btu}}{1.055 \mathrm{~kJ}} \times \frac{1 \mathrm{~kg}}{2.2046 \mathrm{lbm}}=430 \frac{\mathrm{Btu}}{\mathrm{lbm}}$

1-3 $\mathrm{Hp}=50(\mathrm{ft}) \times 0.3048\left(\frac{\mathrm{~m}}{\mathrm{ft}}\right)=15.2 \mathrm{~m}$

$$
\Delta \mathrm{P}=\frac{15.2 \mathrm{~m}}{1000 \mathrm{~Pa} / \mathrm{kPa}} \times \frac{9.807}{1}\left(\frac{\mathrm{~N}}{\mathrm{~kg}}\right) \times 1000\left(\mathrm{~kg} / \mathrm{m}^{3}\right)=149 \mathrm{kPa}
$$

1-4 $\Delta \mathrm{P}=\frac{4}{12}(\mathrm{ft}) \times 0.3048\left(\frac{\mathrm{~m}}{\mathrm{ft}}\right) \times \frac{9.807}{1}\left(\frac{\mathrm{~N}}{\mathrm{~kg}}\right) \times 1000\left(\frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)$

$$
\Delta \mathrm{P}=996 \mathrm{~Pa} \approx 1.0 \mathrm{kPa}
$$

1-5
TOTAL BILL = ENERGY CHARGE + DEMAND CHARGE

+ METER CHARGE
$(96,000) \mathrm{kw}-\mathrm{hrs}(0.045) \$ / \mathrm{kw}-\mathrm{hr}+(624) \mathrm{kw}(11-50) \$ / \mathrm{kw}$
$+\$ 68=\$ 4,320+\$ 7,176+\$ 68=\$ 11,564$

1-6 7 AM to 6 PM $\longrightarrow 11 \mathrm{hrs} /$ day, 5 days/wk
(11) $\frac{\mathrm{hrs}}{\mathrm{day}}$ (22) $\frac{\text { days }}{\text { months }}=242 \mathrm{hrs} /$ month

$$
\text { ratio }=\frac{(624) \mathrm{kw}}{\left(\frac{(96,000) \mathrm{kw}-\mathrm{hr}}{(242) \mathrm{hr}}\right)}=1.57
$$

1-7 This is a trial and error solution since eq. 1-1 cannot be solved explicitly for i .
Answer converges at just over 4.2\% using eq. 1-1
1-8 Determine present worth of savings using eq. 1-1

$$
\mathrm{P}=\frac{(\$ 1000)\left[1-\left(1+\frac{0.012}{12}\right)^{-(12)(12)}\right]}{\left(\frac{0.012}{12}\right)}
$$

$P=\$ 134,000$

1-9
(a) $\dot{\mathrm{Q}}=\overline{\mathrm{V}} \mathrm{A}=2 \times 3.08 \times 10^{-3}=6.16 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}$

$$
\dot{\mathrm{m}}=\rho \dot{\mathrm{Q}}=6.16 \times 10^{-3} \times 998=6.15 \mathrm{~kg} / \mathrm{s}
$$

(b) $A=\frac{\pi}{4}(0.3)^{2}=7.07 \times 10^{-2} \mathrm{~m}^{2}$

$$
\begin{aligned}
& \dot{\mathrm{Q}}=7.07 \times 10^{-2} \times 4=0.283 \mathrm{~m}^{3} / \mathrm{s} ; \quad \rho=1.255 \mathrm{kq} / \mathrm{m}^{3} \\
& \dot{\mathrm{~m}}=1.225 \times 0.283=0.347 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

$$
V=3 \times 10 \times 20=600 \mathrm{~m}^{3}
$$

$$
\dot{\mathrm{Q}}_{\mathrm{i}}=600 \times \frac{1}{4} \times \frac{1}{3600}=4.17 \times 10^{-2} \mathrm{~m}^{3} / \mathrm{s}
$$

1-11

$$
\begin{array}{r}
\dot{\mathrm{q}}=\dot{\mathrm{m}} \mathrm{c}_{\mathrm{p}} \Delta \mathrm{~T} \quad \mathrm{c}_{\mathrm{p}}=4.183 \mathrm{~kJ} /(\mathrm{kg}-\mathrm{K}) \\
\rho \\
\rho=983.2 \mathrm{~kg} / \mathrm{m}^{3}
\end{array}
$$

1-11 (cont'd)

$$
\begin{aligned}
& \dot{\mathrm{q}}=(1) \frac{\mathrm{m}^{3}}{\mathrm{~s}}(983.2) \frac{\mathrm{kg}}{\mathrm{~m}^{3}}(4.183) \frac{\mathrm{kJ}}{\mathrm{~kg}-\mathrm{K}}(5)^{\mathrm{c}}=20,564 \frac{\mathrm{~kJ}}{\mathrm{~s}} \\
& \dot{\mathrm{q}}=20,564 \mathrm{kw}
\end{aligned}
$$

$$
\begin{aligned}
& \dot{\mathrm{q}}_{\text {wat }}=-\dot{\mathrm{q}}_{\text {air }} \\
& 11,200(1)(10)= \\
& =\frac{5000 \times 60 \times 14.7 \times 144 \times 0.24\left(\mathrm{t}_{2}-5 \mathrm{C}\right)}{(53.35 \times 510)}
\end{aligned}
$$

$$
11,200=5601.5\left(\mathrm{t}_{2}-50\right) ; \mathrm{t}_{2}=(11,200 / 5601.5)+50=70 \mathrm{~F}
$$

1-13 Diagram as in 1-12 above.
$\dot{\mathrm{q}}_{\text {wat }}=-\dot{\mathrm{q}}_{\text {air }}$
$1.5(4186)\left(90-\mathrm{t}_{2}\right)=2.4(1.225)(1.0)(30-20)(1000)$
$6279\left(90-\mathrm{t}_{2}\right)=29,400$

$$
t_{2}=90-\frac{29,400}{6279}=85.3 \mathrm{C}
$$

$$
\begin{aligned}
1-14 \quad \dot{\mathrm{q}} & =\mathrm{hA}\left(\mathrm{t}_{\mathrm{s}}-\mathrm{t}_{\infty}\right) \\
\mathrm{A} & =\pi(1 / 12) \times 10=2.618 \mathrm{ft}^{2} \\
\mathrm{t}_{\mathrm{s}} & =\mathrm{t}_{\text {sur }} \approx 212 \mathrm{~F} \\
\dot{\mathrm{q}} & =10 \times 2.618 \times(212-50)=4241 \mathrm{Btu} / \mathrm{hr}
\end{aligned}
$$

$1-15 \quad A=\pi \times 0.25 \times 4=3.1416 \mathrm{~m}^{2}$

$$
\begin{aligned}
& \dot{\mathrm{q}}=\mathrm{hA}\left(\mathrm{t}_{\mathrm{s}}-\mathrm{t}_{\infty}\right) \\
& \mathrm{h}=\frac{\dot{\mathrm{q}}}{\mathrm{~A}\left(\mathrm{t}_{\mathrm{s}}-\mathrm{t}_{\infty}\right)}=\frac{1250}{3.1416(100-10)} ; \mathrm{h}=4.42 \mathrm{~W} /\left(\mathrm{m}^{2}-\mathrm{C}\right)
\end{aligned}
$$

1-16

$$
\dot{\mathrm{q}}=\dot{\mathrm{m}} \mathrm{c}_{\mathrm{p}}\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right) ; \dot{\mathrm{m}}=\dot{\mathrm{Q}} \times \rho
$$

$$
\rho=\mathrm{P} / \mathrm{RT}=14.7 \times 144 / 53.35(76+460)
$$

$$
\rho=0.074 \mathrm{lbm} / \mathrm{ft}^{3}
$$

$$
\dot{\mathrm{m}}=5000 \times 0.074 \times 60=22,208 \mathrm{lbm} / \mathrm{hr}
$$

$$
c_{p}=0.24 \mathrm{Btu} / \mathrm{lbm}-\mathrm{F}
$$

$$
\dot{\mathrm{q}}=22,208 \times 0.24(58-76)=-95,939 \mathrm{Btu} / \mathrm{hr}
$$

Negative sign indicates cooling

1-17 $\quad \dot{m}_{1} \mathrm{c}_{\mathrm{p}}\left(\mathrm{t}_{3}-\mathrm{t}_{1}\right)+$

$$
\begin{aligned}
& \dot{\mathrm{m}}_{2} \mathrm{c}_{\mathrm{p} 2}\left(\mathrm{t}_{3}-\mathrm{t}_{2}\right)=0 \\
& \quad \mathrm{c}_{\mathrm{p} 1}=\mathrm{c}_{\mathrm{p} 2} \\
& \mathrm{t}_{3}=\frac{\left(\dot{\mathrm{m}}_{1} \mathrm{t}_{1}+\dot{\mathrm{m}}_{2} \mathrm{t}_{2}\right)}{\left(\dot{\mathrm{m}}_{1}+\dot{\mathrm{m}}_{2}\right)} \\
& \dot{\mathrm{m}}_{1}=\dot{\mathrm{Q}}_{2} \rho_{1}=1000 \times \frac{14.7 \times 144}{53.35(460+50)}=73.5 \mathrm{lbm} / \mathrm{min}
\end{aligned}
$$

1-17 (cont'd)

$$
\begin{aligned}
\dot{\mathrm{m}}_{2} & =\dot{\mathrm{Q}}_{2} \rho_{2}=600 \times \frac{14.7 \times 144}{53.35(460+50)}=46.7 \mathrm{lbm} / \mathrm{min} \\
\mathrm{t}_{3} & =\frac{(73.5 \times 80)+(46.7 \times 50)}{(73.5+46.7)}=\underline{\underline{68.3 \mathrm{~F}}}
\end{aligned}
$$

