
Chapter 1

First-Order Differential
Equations

1.1 Terminology and Separable Equations

1. For x > 1,

2ϕϕ′ = 2
√

x − 1
1

2
√

x − 1
= 1,

so ϕ is a solution.

2. With ϕ(x) = Ce−x,

ϕ′ + ϕ = −Ce−x + Ce−x = 0,

so ϕ is a solution.

3. For x > 0, rewrite the equation as

2xy′ + 2y = ex.

With y = ϕ(x) = 1
2x−1(C − ex), compute

y′ =
1
2

(−x−2(C − ex) − x−1ex
)
.

Then

2xy′ + 2y = x
(−x−2(C − ex) − x−1ex

)
+ x−1(C − ex) = ex.

Therefore ϕ(x) is a solution.

4. For x �= ±√
2,

ϕ′ =
−2cx

(x2 − 2)2
=

(
2x

2 − x2

) (
c

x2 − 2

)
=

2xϕ

2 − x2
,

so ϕ is a solution.

1

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



2 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

5. On any interval not containing x = 0 we have

xϕ′ = x

(
1
2

+
3

2x2

)
= x +

(
3
2x

− x

2

)
= x −

(
x2 − 3

2x

)
= x − ϕ,

so ϕ is a solution.

6. For all x,
ϕ′ + ϕ = −Ce−x + (1 + Ce−x) = 1

so ϕ(x) = 1 + Ce−x is a solution.

7. Write
3
dy

dx
=

4x

y2

and separate variables:
3y2 dy = 4x dx.

Integrate to obtain
y3 = 2x2 + k,

which implicitly defines the general solution. We can also write

y =
(
2x2 + k

)1/3
.

8. Write the differential equation as

x
dy

dx
= −y

and separate the variables:

1
y

dy = − 1
x

dx.

This separation requires that x �= 0 and y �= 0. Integration gives us
ln |y| = − ln |x| + c. Then

ln |y| + ln |x| = c

so ln |xy| = c. Then xy = ec = k, in which k can be any positive constant.
Notice now that y = 0 is also a solution of the original differential equation.
Therefore, if we allow k to be any constant (positive, negative or zero), we
can omit the absolute values and write the general solution in the implicit
form xy = k.

9. Write the differential equation as

dy

dx
=

sin(x + y)
cos(y)

=
sin(x) cos(y) + cos(x) sin(y)

cos(y)

= sin(x) + cos(x)
sin(y)
cos(y)

.
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1.1. TERMINOLOGY AND SEPARABLE EQUATIONS 3

There is no way to separate the variables in this equation, so the differen-
tial equation is not separable.

10. Since ex+y = exey, we can write the differential equation as

exey dy

dx
= 3x

or, in separated form,
ey dy = 3xe−x dx.

Integration gives us the implicitly defined general solution

ey = −3e−x(x + 1) + c.

11. Write the differential equation as

x
dy

dx
= y(y − 1).

This is separable. If y �= 0 and y �= 1, we can write

1
x

dx =
1

y(y − 1)
dy.

Use partial fractions to write this as

1
x

dx =
1

y − 1
dy − 1

y
dy.

Integrate to obtain

ln |x| = ln |y − 1| − ln |y| + c,

or
ln |x| = ln

∣∣∣y − 1
y

∣∣∣ + c.

This can be solved for x to obtain the general solution

y =
1

1 − kx
.

The trivial solution y(x) = 0 is a singular solution, as is the constant
solution y(x) = 1. We assumed that y �= 0, 1 in the algebra of separating
the variables.

12. This equation is not separable.

13. This equation is separable since we can write it as

sin(y)
cos(y)

dy =
1
x

dx

if cos(y) �= 0 and x �= 0. A routine integration gives the implicitly defined
general solution sec(y) = kx. Now cos(y) = 0 if y = (2n+1)π/2 for n any
integer. y = (2n + 1)π/2 also satisfies the original differential equation
and is a singular solution.
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4 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

14. The differential equation itself assumes that y �= 0 and x �= −1. Write

x

y

dy

dx
=

2y2 + 1
x + 1

,

which separates as

1
y(2y2 + 1)

dy =
1

x(x + 1)
dx.

Use a partial fractions decomposition to write(
1
y
− 2y

1 + 2y2

)
dy =

(
1
x
− 1

1 + x

)
dx.

Integration this equation to obtain

ln |y| − 1
2

ln(1 + 2y2) = ln |x| − ln |x + 1| + c.

Then,

ln

(
y√

1 + 2y2

)
= ln

(
x

x + 1

)
+ c,

in which we have taken the case that y > 0 and x > 0 to drop the absolute
values. Finally, take the exponential of both sides of this equation to
obtain the implicitly defined solution

y√
1 + 2y2

= k

(
x

x + 1

)
.

Since y = 0 satisfies the original differential equation, y = 0 is a singular
solution.

15. This differential equation is not separable.

16. Substitute
sin(x − y) = sin(x) cos(y) − cos(x) sin(y),

cos(x + y) = cos(x) cos(y) − sin(x) sin(y),

and
cos(2x) = cos2(x) − sin2(x)

into the differential equation to obtain the separated equation

(cos(y) − sin(y)) dy = (cos(x) − sin(x)) dx.

Upon integrating we obtain the implicitly defined solution

cos(y) + sin(y) = cos(x) + sin(x) + c.
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1.1. TERMINOLOGY AND SEPARABLE EQUATIONS 5

17. If y �= −1 and x �= 0, we obtain the separated equation

y2

y + 1
dy =

1
x

dx.

Write this as (
y − 1 +

1
1 + y

)
dy =

1
x

dx.

Integrate to obtain

1
2
y2 − y + ln |1 + y| = ln |x| + c.

Now use the initial condition y(3e2) = 2 to obtain

2 − 2 + ln(3) = ln(3) + 2 + c

so c = −2 and the solution is implicitly defined by

1
2
y2 − y + ln(1 + y) = ln(x) − 2,

in which the absolute values have been removed because the initial con-
dition puts the solution in a part of the x, y− plane where x > 0 and
y > −1.

18. Integrate
1

y + 2
dy = 3x2 dx

to obtain ln |2 + y| = x3 + c. Substitute the initial condition to obtain
c = ln(10) − 8. The solution is defined by

ln
(

2 + y

10

)
= x3 − 8.

19. Write ln(yx) = x ln(y) and separate the variables to write

ln(y)
y

dy = 3x dx.

Integrate to obtain (ln(y))2 = 3x2 + c. Substitute the initial condition to
obtain c = −3, so the solution is implicitly defined by (ln(y))2 = 3x2 − 3.

20. Write ex−y2
= exe−y2

and Separate the variables to obtain

2yey2
dy = ex dx.

Integrate to get ey2
= ex + c. The condition y(4) = −2 requires that

c = 0, so the solution is defined implicitly by ey2
= ex, or x = y2. Since

y(4) = −2, the explicit solution is y = −√
x.
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6 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

21. Separate the variables to obtain

y cos(3y) dy = 2x dx,

with solution given implicitly by

1
3
y sin(3y) +

1
9

cos(3y) = x2 + c.

The initial condition requires that

π

9
sin(π) +

1
9

cos(π) =
4
9

+ c,

so c = −5/9. The solution is implicitly defined by

3y sin(3y) + cos(3y) = 9x2 − 5.

22. By Newton’s law of cooling the temperature function T (t) satisfies T ′(t) =
k(T −60), with k a constant of proportionality to be determined, and with
T (0) = 90 and T (10) = 88. This is based on the object being placed in
the environment at time zero. This differential equation is separable (as in
the text) and we solve it subject to T (0) = 90 to obtain T (t) = 60+30ekt.
Now

T (10) = 88 = 60 + 30e10k

gives us e10k = 14/15. Then

k =
1
10

ln
(

14
15

)
≈ −6.899287(10−3).

Since e10k = 14/15, we can write

T (t) = 60 + 30(e10k)t/10 = 60 + 30
(

14
15

)t/10

.

Now

T (20) = 60 + 30
(

14
15

)2

≈ 86.13

degrees Fahrenheit. To reach 65 degrees, solve

65 = 60 + 30
(

14
15

)t/10

to obtain

t =
10 ln(1/6)
ln(14/15)

≈ 259.7

minutes.
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1.1. TERMINOLOGY AND SEPARABLE EQUATIONS 7

23. Suppose the thermometer was removed from the house at time t = 0, and
let t > 0 denote the time in minutes since then. The house is kept at
70 degrees F. Let A denote the unknown outside ambient temperature,
which is assumed constant. The temperature of the thermometer at time
t is modeled by

T ′(t) = k(T − A);T (0) = 70, T (5) = 60 and T (15) = 50.4.

There are three conditions because we must find k and then A.

Separation of variables and the initial condition T (0) = 70 yield the ex-
pression T (t) = A + (70 − A)ekt. The other two conditions now give
us

T (5) = 60 = A + (70 − A)e5k and T (15) = 50.4 = A + (70 − A)e15k.

Solve the first equation to obtain

e5k =
60 − A

70 − A
.

Substitute this into the second equation to obtain

(7 − A)
(

60 − A

70 − A

)3

= 50.4 − A.

This yields the quadratic equation

10.4A2 − 1156A + 30960 = 0

with roots A = 45 and 66.16. Clearly we require that A < 50.4, so A = 45
degrees Fahrenheit.

24. The amount A(t) of radioactive material at time t is modeled by

A′(t) = kA; A(0) = e3

together with the condition A(ln(2)) = e3/2, since we must also find k.
Time is in weeks. Solve to obtain

A(t) =
(

1
2

)t/ ln(2)

e3

tons. Then A(3) = e3(1/2)3/ ln(2) = 1 ton.

25. Similar to Problem 24, we find that the amount of Uranium-235 at time t
is

U(t) = 10
(

1
2

)t/(4.5(109))

,

with t in years. Then U(109) = 10(1/2)1/4.5 ≈ 8.57 kg.
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8 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

26. At any time t there will be A(t) = 12ekt gms, and A(4) = 9.1 requires
that e4k = 9.1/12, so

k =
1
4

ln
(

9.1
12

)
≈ −0.06915805.

The half-life is the time t∗ so that A(t∗) = 6, or ekt∗ = 1/2. This gives
t∗ = − ln(2)/k ≈ 10.02 minutes.

27. Compute

I ′(x) = −
∫ ∞

0

2x

t
e−(t2+(x/t)2) dt.

Let u = x/t to obtain

I ′(x) = 2
∫ 0

∞
e−((x/u)2+u2) du

= −2
∫ ∞

0

e−(u2+(x/u)2) du = −2I(x).

This is the separable equation I ′ = −2I. Write this as

1
I

dI = −2 dx

and integrate to obtain I(x) = ce−2x. Now

I(0) =
∫ ∞

0

e−t2 dt =
√

π

2
,

a standard result often used in statistics. Then

I(x) =
√

π

2
e−2x.

Put x = 3 to obtain ∫ ∞

0

e−t2−(9/t2) dt =
√

π

2
e−6.

28. (a) For water h feet deep in the cylindrical hot tub, V = 25πh, so

25π
dh

dt
= −0.6π

(
5
16

)2 √
64h,

with h(0) = 4. Thus
dh

dt
= −3

√
h

160
.
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1.1. TERMINOLOGY AND SEPARABLE EQUATIONS 9

(b) The time it will take to drain the tank is

T =
∫ 0

4

(
dt

dh

)
dh

=
∫ 0

4

− 160
3
√

h
dh =

640
3

seconds.

(c) To drain the upper half will require

T1 =
∫ 2

4

− 160
3
√

h
dh =

320
3

(2 −
√

2)

seconds, approximately 62.5 seconds. The lower half requires

T2 =
∫ 0

2

− 160
3
√

h
dh =

320
3

√
2

seconds, about 150.8 seconds.

29. Model the problem using Torricelli’s law and the geometry of the hemi-
spherical tank. Let h(t) be the depth of the liquid at time t, r(t) the
radius of the top surface of the draining liquid, and V (t) the volume in
the container (See Figure 1.1). Then

dV

dt
= −kA

√
2gh and

dV

dt
= πr2 dh

dt
.

Here r2 +h2 = 182, since the radius of the tub is 18. We are given k = 0.8
and A = π(1/4)2 = π/16 is the area of the drain hole. With g = 32 feet
per second per second, we obtain the initial value problem

π(324 − h2)
dh

dt
= 0.4π

√
h;h(0) = 18.

This is a separable differential equation with the general solution

1620
√

h − h5/2 = −t + k.

Then h(0) = 18 yields k = 3888
√

2, so

1620
√

h − h5/2 = 3888
√

2 − t.

The hemisphere is emptied at the instant that h = 0, hence at t = 3888
√

2
seconds, about 91 minutes, 39 seconds.

30. From the geometry of the sphere (Figure 1.2), dV/dt = −kA
√

2gh becomes

π(32A − (h − 18)2)
dh

dt
= −0.8π

(
1
4

)2 √
64h,

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



10 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

h(t)
18

r(t)

Figure 1.1: Problem 29, Section 1.1.

18

18

h(t) - 18

h(t)

Figure 1.2: Problem 30, Section 1.1.
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1.1. TERMINOLOGY AND SEPARABLE EQUATIONS 11

with h(0) = 36. Here h(t) is the height of the upper surface of the fluid
above the bottom of the sphere. This equation simplifies to

(36
√

h − h3/2) dh = −0.4 dt,

a separated equation with general solution h
√

h(60 − h) = −t + k. Then
t = 0 when h = 36 gives us k = 5184. The tank runs empty when h = 0,
so t = 5184 seconds, about 86.4 minutes. This is the time it takes to drain
this spherical tank.

31. (a) Let r(t) be the radius of the exposed water surface and h(t) the depth
of the draining water at time t. Since cross sections of the cone are similar,

πr2 dh

dt
= −kA

√
2gh,

with h(0) = 9. From similar triangles (Figure 1.3), r/h = 4/9, so r =
(4/9)h. Substitute k = 0.6, g = 32 and A = π(1/12)2 and simplify the
resulting equation to obtain

h3/2 dh

dt
= −27/160,

with h(0) = 9. This separable equation has the general solution given
implicitly by

h5/2 = −27
64

t + k.

Since h(0) = 9, then k = 243 and the tank empties out when h = 0, so

t = 243
(

64
27

)
= 576

seconds, about 9 minutes, 36 seconds.

(b) This problem is modeled like part (a), except now the cone is inverted.
This changes the similar triangle proportionality (Figure 1.4) to

r

9 − h
=

4
9
.

Then r = (4/9)(9 − h). The separable differential equation becomes

(9 − h)2√
h

dh = − 27
160

,

with h(0) = 9. This initial value problem has the solution

162
√

h − 12h3/2 +
2
5
h5/2 = − 27

160
t +

1296
5

.

The tank runs dry at h = 0, which occurs when

t =
160
27

(
1296

5

)
= 1536

seconds, about 25 minutes, 36 seconds.
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12 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

r

h
9

4

Figure 1.3: Problem 31(a), Section 1.1.

r

h

9

4

Figure 1.4: Problem 31(b), Section 1.1.
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1.1. TERMINOLOGY AND SEPARABLE EQUATIONS 13

32. From the geometry of the cone and Torricelli’s law,

dV

dt
= π

(
16
81

)
h2 dh

dt
= − (0.6)(8π)

144

√
h − 2

when the drain hole is two feet above the vertex. With the drain hole at
the bottom of the tank we get

dV

dt
= π

(
16
81

)2

h2 dh

dt
= − (0.6)(8π)

144

√
h.

If we know the rates of change of depth of the water in these two instances,
then we can locate the drain hole height above the bottom of the tank,
knowing the hole size, since

π

(
16
81

)
h2

(
dh

dt

)
1

= −kA
√

2g(h − h0)

divided by

π

(
16
81

)2

h2

(
dh

dt

)
2

= −kA
√

2gh

yields
h − h0√

h
=

(dh/dt)1
(dh/dt)2

= r,

a known constant. We can therefore solve for h0, the location of the hole
above the bottom of the tank.

33. Begin with the logistic equation

P ′(t) = aP (t) − bP (t)2

in which a and b are positive constants. Then

dP

dt
= (a − bP )P.

This is separable and we can write

1
(a − bP )P

dP = dt.

Use a partial fractions decomposition to write(
1
a

1
P

+
b

a

1
a − bP

)
dP = dt.

Integrate to obtain

1
a

ln(P ) − 1
a

ln(a − bP ) = t + c.
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14 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

Here we assume that P (t) > 0 and a − bP (t) > 0. Write this equation as

ln
(

P

a − bP

)
= at + k,

with k = ac still a constant to be determined. Then

P

a − bP
= eat+k = ekeat = Keat,

where K = ek is the constant to be determined. Now P (0) = p0, so

K =
p0

a − bp0
.

Then
P

a − bP
=

p0

a − bp0
eat.

It is a straightforward algebraic manipulation to solve for P and obtain

P (t) =
ap0

a − bp0 + bp0eat
eat.

Notice that P (t) is a strictly increasing function. Further, by multiplying
numerator and denominator by e−at, and using the fact that a > 0, we
have

lim
t→∞P (t) = lim

t→∞
ap0

(a − bp0)e−at + bp0

=
ap0

bp0
=

a

b
.

34. With a and b taking on the given values, and p0 = 3, 929, 214, the popula-
tion in 1790, we obtain the logistic model for the United States population
growth:

P (t) =
123, 141.5668

0.03071576577 + 0.0006242342282e0.03134t
e0.03134t.

Table 1.1 shows compares the population figures given by P (t) with the
actual numbers, together with the percent error (positive if P (t) exceeds
the actual population, negative if P (t) is an underestimate).

An exponential model can also be constructed as Q(t) = Aekt. Then

A = Q(0) = 3, 929, 214,

the initial (1790) population. To find k, use the fact

Q(10) = 5308483 = 3929214e10k
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1.1. TERMINOLOGY AND SEPARABLE EQUATIONS 15

year population P (t) percent error Q(t) percent error
1790 3,929,214 3,929,214 0 3,929,214 0
1800 5,308,483 5,336,313 0.52 5,308,483 0
1810 7,239,881 7,228,471 -0.16 7,179,158 -0.94
1820 9,638,453 9,757,448 1.23 9,689,468 0.53
1830 12,886,020 13,110,174 1.90 13,090,754 1.75
1840 17,069,453 17,507,365 2.57 17,685,992 3.61
1850 23,191,876 23,193,639 0.008 23,894,292 3.03
1860 31,443,321 30,414,301 -3.27 32,281,888 2.67
1870 38,558,371 39,374,437 2.12 43,613,774 13.11
1880 50,189,209 50,180,383 -0.018 58,923,484 17.40
1890 62,979,766 62,772,907 -0.33 79,073,491 26.40
1900 76,212,168 76,873,907 0.87 107,551,857 41.12
1910 92,228,496 91,976,297 -0.27 145,303,703 57.55
1920 106,021,537 107,398,941 1.30 196,312,254 85.16
1930 123,202,624 122,401,360 -0.65
1940 132,164,569 136,320,577 3.15
1950 151,325,798 148,679,224 -1.75
1960 179,323,175 159,231,097 -11.2
1970 203,302,031 167,943,428 -17.39
1980 226,547,042 174,940,040 -22.78

Table 1.1: Census and model data for Problems 33 and 34

to solve for k, obtaining

k =
1
10

ln
(

5308483
3929214

)
≈ 0.03008667012.

Thus the exponential model determined using these two data points (1790
and 1800) is

Q(t) = 3929214e0.03008667012t.

Population figures predicted by this model are also included in Table 1.1,
along with percentage errors. Notice that the logistic model remains quite
accurate until 1960, at which time the error increases dramatically for the
next three years. The exponential model becomes increasingly inaccurate
by 1870, after which the error rapidly becomes so large that it is not worth
computing further. Exponential models do not work well over time with
complex populations, such as fish in the ocean or countries throughout
the world.

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



16 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

1.2 Linear Equations

1. With p(x) = −3/x, an integrating factor is

e
R

p(x) dx = e−3 ln(x) = x−3.

Multiply the differential equation by x−3 to obtain

d

dx
(yx−3) =

2
x

.

A routine integration gives us yx−3 = 2 ln(x) + c, or

y = cx3 + 2x3 ln |x|
for x �= 0.

2. e
R

dx = ex is an integrating factor. Multiply the differential equation by
ex to obtain

y′ex + yex = (yex)′ =
1
2

(
e2x − 1

)
.

Integrate to obtain

yex =
1
4
e2x − 1

2
x + c.

Then
y =

1
4
ex − 1

2
xe−x + ce−x.

3. e
R

2 dx = e2x is an integrating factor. Multiply the differential equation by
e2x to obtain

y′e2x + 2y = (ye2x)′ = xe2x.

Integrate to obtain

ye2x =
∫

xe2x dx =
1
2
xe2x − 1

4
e2x + c.

The general solution is

y =
1
2
x − 1

4
+ ce−2x.

4. An integrating factor is

e
R

sec(x) dx = eln | sec(x)+tan(x)| = sec(x) + tan(x).

Multiply the differential equation by sec(x) + tan(x) to obtain

y′(sec(x) + tan(x)) + (sec(x) tan(x) + sec2(x))y
= (y(sec(x) + tan(x)))′ = cos(x)(sec(x) + tan(x))
= 1 + sin(x).
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1.2. LINEAR EQUATIONS 17

Integrate this equation to obtain

y(sec(x) + tan(x)) = x − cos(x) + k.

Multiply both sides of this equation by

1
sec(x) + tan(x)

=
cos(x)

1 + sin(x)

to obtain

y = (x − cos(x) + k)
(

cos(x)
1 + sin(x)

)

=
x cos(x) − cos2(x) + k cos(x)

1 + sin(x)
.

5. An integrating factor is e
R −2 dx = e−2x. Multiply the differential equation

by e−2x to obtain

y′e−2x − 2ye−2x = (ye−2x)′ = −8x2e−2x.

Integrate to obtain

ye−2x =
∫

−8x2e−2x dx = 4x2e−2x + 4xe−2x + 2e−2x + c.

The general solution is

y = 4x2 + 4x + 2 + ce2x.

6. e
R

3 dx = e3x is an integrating factor. Multiply the differential equation by
e3x to obtain

y′e3x + 3ye3x = (ye3x)′ = 5e5x − 6e3x.

Integrate to obtain the general solution

ye3x = e5x − 2e3x + c.

The general solution is

y = e2x − 2 + ce−3x.

Now we need
y(0) = 1 − 2 + c = 2,

so c = 3. The initial value problem has the solution

y = e2x − 2 + 3e−3x.
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18 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

7. Notice that, if we multiply the differential equation by x − 2, we obtain

y′(x − 2) + y = ((x − 2)y)′ = 3x(x − 2).

Integrate to obtain
(x − 2)y = x3 − 3x2 + c.

The general solution is

y =
1

x − 2
(x3 − 3x2 + c).

Now
y(3) = 27 − 27 + c = 4

so the initial value problem has the solution

y =
x3 − 3x2 + 4

x − 2
= x2 − x − 2.

8. Multiply the differential equation by the integrating factor e−x to obtain

(ye−x)′ = 2e3x.

Integrate to obtain

ye−x =
2
3
e3x + c.

The general solution is

y =
2
3
e4x + cex.

Then
y(0) = −3 =

2
3

+ c

so c = −11/3 and the initial value problem has the solution

y =
2
3
e4x − 11

3
ex

9. An integrating factor is

e
R

(2/(x+1)) dx = e2 ln |x+1| = eln((x+1)2) = (x + 1)2.

Multiply the differential equation by (x + 1)2 to obtain

(x + 1)2y′ + 2(x + 1)y = ((x + 1)2y)′ = 3(x + 1)2.

Integrate to obtain
(x + 1)2y = (x + 1)3 + c.

Then
y = (x + 1) +

c

(x + 1)2
.
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1.2. LINEAR EQUATIONS 19

Now
y(0) = 5 = 1 + c

so c = 4 and the solution of the initial value problem is

y = x + 1 +
4

(x + 1)2
.

10. An integrating factor is

e
R

(5/9x) dx = e(5/9) ln(x) = eln(x5/9) = x5/9.

Multiply the differential equation by x5/9 to obtain

(yx5/9)′ = 3x32/9 + x14/9.

Integrate to obtain

yx5/9 =
27
41

x41/9 +
9
23

x23/9 + c.

Then
y =

27
41

x4 +
9
23

x2 + cx−5/9.

We need
y(−1) = 4 =

27
41

+
9
23

− c,

so c = −2782/943. The solution is

y =
27
41

x4 +
9
23

x2 − 2782
943

x−5/9

11. Let (x, y) be a point on the curve. The tangent line at (x, y) must pass
through (0, 2x2), hence must have slope (y − 2x2)/x. But this slope is y′,
so we have the differential equation

y′ =
y − 2x2

x
.

This is the linear differential equation

y′ − 1
x

y = −2x,

which has the general solution y = −2x2 + cx.

12. If A(t) is the amount of salt in the tank at time t ≥ 0, then

dA

dt
= rate salt is added − rate salt is removed

= 6 − 2
(

A(t)
50 + t

)
,
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20 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

and the initial condition is A(0) = 28.

This differential equation is linear:

A′ +
2

50 + t
A = 6,

with integrating factor (50 + t)2. The general solution is

A(t) = 2(50 + t) +
C

(50 + t)2
,

The initial condition gives us C = −180, 000, so

A(t) = 2(50 + t) − 180000
(50 + t)2

.

The tank contains 100 gallons when t = 50 and A(50) = 176 pounds of
salt.

13. If A1(t) and A2(t) are the amounts of salt in tanks one and two, respec-
tively, at time t, we have

A′
1(t) =

5
2
− 5A1(t)

100
; A1(0) = 20

and

A′
2(t) =

5A1(t)
100

− 5A2(t)
150

; A2(0) = 90.

Solve the first initial value problem to obtain

A1(t) = 50 − 30e−t/20.

Substitute this into the problem for A2(t) to obtain

A′
2 +

1
30

A2 =
5
2
− 3

2
e−t/20; A2(0) = 90.

Solve this to obtain

A2(t) = 75 + 90e−t/20 − 75e−t/30.

Tank 2 has its minimum when A′
2(t) = 0, hence when

2.5e−t/30 − 4.5e−t/20 = 0.

Then et/60 = 9/5, or t = 60 ln(9/5). Then

A2(t)min = A2(60 ln(9/5)) =
5450
81

pounds.
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1.3. EXACT EQUATIONS 21

1.3 Exact Equations

In the following we assume that the differential equation has the form M(x, y)+
N(x, y)y′ = 0, or, in differential form, M dx + N dy = 0.

1. Since
∂M

∂y
= 4y + exy + xyexy =

∂N

∂x

for all x and y, the equation is exact in the entire plane. One way to find
a potential function is to integrate

∂ϕ

∂x
= M(x, y) = 2y2 + yexy

with respect to x to obtain

ϕ(x, y) = 2xy2 + exy + α(y).

Then we need
∂ϕ

∂y
= 4xy + xexy + α′(y) = N(x, y) = 4xy + xexy + 2y.

This requires that α′(y) = 2y so we may choose α(y) = y2. A potential
function has the form

ϕ(x, y) = 2xy2 + exy + y2.

The general solution is implicitly defined by

ϕ(x, y) = 2xy2 + exy + y2 = c.

We could have also started by integrating ∂N/∂y = 4xy + xexy + 2y with
respect to y.

2. Since ∂M/∂y = 4x = ∂N/∂x for all x and y, the equation is exact in the
plane. We can find a potential function by integrating

∂ϕ

∂y
= 2x2 + 3y2

with respect to y to obtain

ϕ(x, y) = 2x2y + y3 + β(x).

Then
∂ϕ

∂x
= 4xy + β′(x) = 4xy + 2x,

so β′(x) = 2x and we can choose β(x) = x2. A potential function is

ϕ(x, y) = 2x2y + y3 + x2

and the general solution is defined implicitly by

2x2y + y3 + x2 = c.
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22 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

3. ∂M/∂y = 4 + 2x2 and ∂N/∂x = 4x, so this equation is not exact.

4.
∂M

∂y
= −2 sin(x + y) − 2x cos(x + y) =

∂N

∂x

so the equation is exact over the plane. Routine integrations yield the
potential function is ϕ(x, y) = 2x cos(x + y) and the general solution is
implicitly defined by 2x cos(x + y) = c.

5. ∂M/∂y = 1 = ∂N/∂x, so the equation is exact for all (x, y) with x �= 0,
where the equation is not defined. Integrate ∂ϕ/∂x = M or ∂ϕ/∂y = N
to obtain the potential function

ϕ(x, y) = ln |x| + xy + y3.

The general solution is defined implicitly by

ϕ(x, y) = ln |x| + xy + y3 = c

for x �= 0.

6. For the equation to be exact, we need

∂M

∂y
= αxyα−1 =

∂N

∂x
= −2xyα−1.

This holds if α = −2. By integrating, we find the potential function
ϕ(x, y) = x3 + x2/2y2, so the general solution is defined implicitly by

x3 +
x2

2y2
= c.

7. For exactness we need

∂M

∂y
= 6xy2 − 3 =

∂N

∂x
= −3 − 2αxy2

and this requires that α = −3. By integration, we find a potential function
ϕ(x, y) = x2y3 − 3xy − 3y2. The general solution is implicitly defined by

x2y3 − 3xy − 3y2 = c.

8. Compute

∂M

∂y
= 2 − 2y sec2(xy2) − 2xy3 sec2(xy2) tan(xy2)

and
∂N

∂x
= 2 − 2y sec2(xy2) − 2xy3 sec2(xy2) tan(xy2).
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Since these partial derivatives are equal for all x and y for which the
functions are defined, the differential equation is exact for such x and
y. To find a potential function, we can start by integrating ∂ϕ/∂x =
2y − y2 sec2(xy2) with respect to x to obtain

ϕ(x, y) = 2xy − tan(xy2) + α(y).

Now we need

∂ϕ

∂y
= 2x − 2xy sec2(xy2)

= 2x − 2xy sec2(xy2) + α′(y).

This requires that α′(y) = 0 and we may choose α(y) = 0. A potential
function is

ϕ(x, y) = 2xy − tan(xy2).

The general solution is implicitly defined by

2xy − tan(xy2) = c.

For the initial condition we need y = 2 when x = 1, which requires that

2(2) − tan(4) = c.

The unique solution of the initial value problem is implicitly defined by

2xy − tan(xy2) = 4 − tan(4).

9. Since ∂M/∂y = 12y3 = ∂N∂x, the differential equation is exact for all x
and y. Straightforward integrations yield the potential function

ϕ(x, y) = 3xy4 − x.

The general solution is implicitly defined by

3xy4 − x = c.

For the initial condition, we need y = 2 when x = 1, so

3(1)(24) − 1 = 47 = c.

The initial value problem has the unique solution implicitly defined by

3xy4 − x = 47.

10. Compute

∂M

∂y
=

1
x

ey/x − 1
x

ey/x − y

x2
ey/x

= − y

x2
ey/x =

∂N

∂x
,
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24 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

so the differential equation is exact for all x �= 0 and all y. For a potential
function, begin with

∂ϕ

∂y
= ey/x

and integrate with respect to y to obtain

ϕ(x, y) = xey/x + β(x).

Then
∂ϕ

∂x
= 1 + ey/x − y

x
ey/x = ey/x − y

x
ey/x + β′(x).

This requires that β′(x) = 1 so choose β(x) = x. Then

ϕ(x, y) = xey/x + x.

The general solution is implicitly defined by

xey/x + x = c.

For the initial value problem, we need to choose c so that

e−5 + 1 = c.

The solution of the initial value problem is implicitly defined by

xey/x + x = 1 + e−5.

11. Compute

∂M

∂y
= −2x sin(2y − x) − 2 cos(2y − x) =

∂N

∂x
,

so the differential equation is exactly. For a potential function, integrate

∂ϕ

∂y
= −2x cos(2y − x)

with respect to y to get

ϕ(x, y) = −x sin(2y − x) + α(x).

Then we must have

∂ϕ

∂x
= x cos(2y − x) − sin(2y − x)

= − sin(2y − x) + x cos(2y − x) + α′(x).

Then α′(x) = 0 and we may choose α(x) = 0 to obtain

ϕ(x, y) = −x sin(2y − x).
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The general solution has the form

−x sin(2y − x) = c.

For y(π/12) = π/8, we need

− π

12
sin

(π

4
− π

12

)
= − π

12
sin(π/6) = − π

24
= c.

The solution of the initial value problem is implicitly defined by

x sin(2y − x) =
π

24
.

12. The equation is exact over the entire plane because

∂M

∂y
= ey =

∂N

∂x
.

Integrate
∂ϕ

∂x
= ey

with respect to x to get

ϕ(x, y) = xey + α(y).

Then we need
∂ϕ

∂y
= xey + α′(y) = xey − 1.

Then α′(y) = −1 and we can take α(y) = −y. Then

ϕ(x, y) = xey − y.

The general solution is implicitly defined by

xey − y = c.

For the initial condition, we need y = 0 when x = 5, so choose c = 5 to
obtain the implicitly defined solution

xey − y = 5.

13. ϕ + c is also a potential function if ϕ is because

∂(ϕ + c)
∂x

=
∂ϕ

∂x

and
∂(ϕ + c)

∂y
=

∂ϕ

∂y

Any function defined implicitly by ϕ(x, y) = k is also defined by ϕ(x, y)+
c = k, because, if k can assume any real value, so can k − c for any c.
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14. (a)
∂M

∂y
= 1 and

∂N

∂x
= −1

so this differential equation is not exact over any rectangle in the plane.

(b) Multiply the differential equation by x−2 to obtain

yx−2 − x−1y′ = 0.

This is exact over any rectangle not containing x = 0, because

∂M∗

∂y
= x−2 =

∂N∗

∂x
.

This equation has potential function ϕ(x, y) = −yx−1, so the general
solution is defined implicitly by

−yx−1 = c.

(c) If we multiply the differential equation by y−2 we obtain

y−1 − xy−2y′ = 0.

This is exact on any region not containing y = 0 because

∂M∗∗

∂y
= −y−2 =

∂N∗∗

∂x
.

This has potential function ϕ(x, y) = xy−1, so the differential equation
has the general solution

xy−1 = c.

(d) Multiply the differential equation by xy−2 to obtain

xy−2 − x2y−3y′ = 0.

Now
∂M∗∗∗

∂y
= −2xy−3 =

∂N∗∗∗

∂x

so this differential equation is exact. Integrate ∂ϕ/∂x = xy−2 with respect
to x to obtain

ϕ(x, y) =
1
2
x2y−2 + β(y).

Then
∂ϕ

∂y
= −x2y−3 + β′(y) = −x2y−3

so choose β(y) = 0. The general solution in this case is given implicitly
by

x2y−2 = c.
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(e) As a linear equation, we have

y′ − 1
x

y = 0,

or xy′ − y = (x−1y)′ = 0. This has general solution defined implicitly by
x−1y = c.

(f) The general solutions obtained in (b) through (e) are the same. For
example, in (b) we obtained −yx−1 = c. Since c is an arbitrary constant,
this can be written y = kx. In (d) we obtained x2y−2 = c. This can be
written y2 = Cx2, or y = kx.

15. Multiply the differential equation by µ(x, y) = xayb to obtain

xa+1yb+1 + xayb−3/2 + xa+2yby′ = 0.

For this to be exact, we need

∂M

∂y
= (b + 1)xa+1yb +

(
b − 3

2

)
xayb−5/2

=
∂N

∂x
= (a + 2)xa+1yb.

Divide this by xayb to require that

(b + 1)x +
(

b − 3
2

)
y−5/2 = (a + 2)x.

This will be true for all x and y if we let b = 3/2, and then choose a so
that (b + 1)x = (a + 2)x, so b + 1 = a + 2. Therefore

a =
1
2

and b =
3
2
.

Multiply the original differential equation by µ(x, y) = x1/2y3/2 to obtain

x3/2y5/2 + x1/2 + x5/2y3/2y′ = 0.

Integrate ∂ϕ/∂y = x5/2y3/2 to obtain

ϕ(x, y) =
2
5
x5/2y5/2 + β(x).

Then we need

∂ϕ

∂x
= x3/2y5/2 + β′(x) = x3/2y5/2 + x1/2.

Then β(x) = 2x3/2/3 and a potential function is

ϕ(x, y) =
2
5
x5/2y5/2 +

2
3
x3/2.
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The general solution of the original differential equation is

ϕ(x, y) =
2
5
x5/2y5/2 +

2
3
x3/2 = c.

The differential equation multiplied by the integrating factor has the same
solutions as the original differential equation because the integrating factor
is assumed to be nonzero. Thus we must exclude x = 0 and y = 0, where
µ = 0.

16. Multiply the differential equation by xayb:

2xayb+2 − 9xa+1yb+1 + (3xa+1yb+1 − 6xa+2yb)y′ = 0.

For this to be exact, we must have

∂M

∂y
= (b + 2)2xayb+1 − 9(b + 1)xa+1yb

=
∂N

∂x
= 3(a + 1)xayb+1 − 6(a + 2)xa+1yb.

Divide by xayb to obtain, after some rearrangement,

(2(b + 2) − 3(a + 1))y = ((9(b + 1) − 6(a + 2))x.

Since x and y are independent, this equation can hold only if the coeffi-
cients of x and y are zero, giving us two equations for a and b:

−3a + 2b = −1,−6a + 9b = 3.

Then a = b = 1, so µ(x, y) = xy is an integrating factor. Multiply the
differential equation by xy:

2xy3 − 9x2y2 + (3x2y2 − 6x3y)y′ = 0.

It is routine to check that this equation is exact. For a potential function,
integrate

∂ϕ

∂x
= 2xy3 − 9x2y2

with respect to x to get

ϕ(x, y) = x2y3 − 3x3y2 + β(y).

Then
∂ϕ

∂y
= 3x2y2 − 6x3y + β′(y).

We may choose β(y) = 0, so ϕ(x, y) = x2y3 − 3x3y2. The general solution
is implicitly defined by

x2y3 − 3x3y2 = c.
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1.4 Homogeneous, Bernoulli and Riccati Equa-
tions

1. This is a Riccati equation with solution S(x) = x (by inspection). Put
y = x + 1/z and substitute to obtain

2 − z′

z2
=

1
x2

(
x +

1
z

)2

− 1
x

(
x +

1
z

)
+ 1.

Simplify this to obtain

z′ +
1
x

z = − 1
x2

.

This linear differential equation can be written (xz)′ = −1/x and has the
solution

z = − ln(x)
x

+
c

x
.

Then
y = x +

x

c − ln(x)

for x > 0.

2. This is a Bernoulli equation with α = −4/3. Put v = y7/3, or y = v3/7.
Substitute this into the differential equation to get

3
7
v−4/7v′ +

1
x

v3/7 =
2
x3

v−4/7.

This simplifies to the linear equation

v′ +
7
3x

v =
14
3x2

.

This has integrating factor x7/3 and can be written

(vx7/3)′ =
14
3

x1/3.

Integration yields

vx7/3 =
7
2
x4/3 + c.

Since v = y7/3, we obtain

2y7/3x7/3 − 7x4/3 = k.

This implicitly defined the general solution.

3. This is a Bernoulli equation with α = 2 and we obtain the general solution

y =
1

1 + cex2/2
.
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4. This equation is homogeneous. With y = xu, we obtain

u + xu′ = u +
1
u

.

Then
x

du

dx
=

1
u

,

a separable equation. Write

u du =
1
x

dx.

Integrate to obtain
u2 = 2 ln |x| + c.

Then
y2

x2
= 2 ln |x| + c

implicitly defines the general solution of the original differential equation.

5. This differential equation is homogeneous, and y = xu yields the general
solution implicitly defined by

y ln |y| − x = cy.

6. The differential equation is Riccati and we see one solution S(x) = 4. We
obtain the general solution

y = 4 +
6x3

c − x3
.

7. This equation is exact, with general solution defined by

xy − x2 − y2 = c.

8. The differential equation is homogeneous, and y = xu yields the general
solution defined by

sec
(y

x

)
+ tan

(y

x

)
= cx.

9. The differential equation is Bernoulli, with α = −3/4. The general solu-
tion is given by

5x7/4y7/4 + 7x−5/4 = c.

10. The differential equation is homogeneous and y = xu yields

2
√

3√
3

arctan
(

2y − x√
3x

)
= ln |x| + c.

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



1.4. HOMOGENEOUS, BERNOULLI AND RICCATI EQUATIONS 31

11. The equation is Bernoulli with α = 2. We obtain

y = 2 +
2

cx2 − 1
.

12. The equation is homogeneous and y = xu yields

1
2

x2

y2
= ln |x| + c.

13. The equation is Riccati with one solution S(x) = ex. The general solution
is

y =
2ex

ce2x − 1
.

14. The equation is Bernoulli with α = 2 and general solution

y =
2

3 + cx2
.

15. For the first part,

F

(
ax + by + c

dx + py + r

)
= F

(
a + b(y/x) + c/x

d + p(y/x) + r/x

)
= f

(y

x

)
if and only if c = r = 0.

Now suppose x = X + h and y = Y + k. Then

dY

dX
=

dY

dx

dx

dX
=

dy

dx

so

dY

dX
= F

(
a(X + h) + b(Y + k) + c

d(X + h) + p(Y + k) + r

)

= F

(
aX + bY + c + ah + bk + c

dX + pY + r + dh + pk + r

)

This equation is homogeneous exactly when

ah + bk = −c and dh + pk = −r.

This two by two system has a solution when the determinant of the coef-
ficients is nonzero: ap − bd �= 0.

16. Here a = 0, b = 1, c = −3 and d = p = 1, r = −1. Solve

k = 3, h + k = 1

to obtain k = 3 and h = −2. Thus let x = X − 2, y = Y + 3 to obtain

dY

dX
=

Y

X + Y
,
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a homogeneous equation. Letting U = Y/X we obtain, after some manip-
ulation,

1 + U

U
dU =

1
X

dX,

a separable equation with general solution

U ln |U | − 1 = −U ln |X| + KU,

in which K is the arbitrary constant. In terms of x and y,

(y − 3) ln |y − 3| − (x + 2) = K(y − 3).

17. Set x = X + 2, y = Y − 3 to obtain

dY

dX
=

3X − Y

X + Y
.

This homogeneous equation has general solution (in terms of x and y)

3(x − 2)2 − 2(x − 2)(y + 3) − (y + 3)2 = K.

18. With x = X − 5 and y = Y − 1 we obtain

(x + 5)2 + 4(x + 5)(y + 1) − (y + 1)2 = K.

19. with x = X + 2 and y = Y − 1 we obtain

(2x + y − 3)2 = K(y − x + 3).

1.5 Additional Applications

1. Once released, the only force acting on the ballast bag is due to gravity.
If y(t) is the distance from the bag to the ground at time t, then y′′ =
−g = −32, with y(0) = 4. With two integrations, we obtain

y′(t) = 4 − 32t and y(t) = 342 + 4t − 16t2.

The maximum height is reached when y′(t) = 0, or t = 1/8 second. This
maximum height is y(1/8) = 342.25 feet. The bag remains aloft until
y(t) = 0, or −16t2 + 4t + 342 = 0. This occurs at t = 19/4 seconds, and
the bag hits the ground with speed |y′(19/4)| = 148 feet per second.

2. With a gradient of 7/24 the plane is inclined at an angle θ for which
sin(θ) = 7/25 and cos(θ) = 24/25. The velocity of the box satisfies

48
32

dv

dt
= −48

(
24
25

)(
1
3

)
+ 48

(
7
25

)
− 3

2
v; v(0) = 16.
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Solve this initial value problem to obtain

v(t) =
432
25

e−t − 32
25

feet per second. This velocity reaches zero when ts = ln(27/2) seconds.
The box will travel a distance of

s(ts) =
∫ ts

0

v(ξ) dξ =
432
25

(1 − e−ts) − 32
25

ts

=
432
25

(
1 − 2

27

)
− 32

25
ln

(
27
2

)
≈ 12.7

feet.

3. Until the parachute is opened at t = 4 seconds, the velocity v(t) satisfies
the initial value problem(

192
32

)
dv

dt
= 192 − 6v; v(0) = 0.

This has solution v(t) = 32(1 − e−t) for 0 ≤ t ≤ 4. When the parachute
opens at t = 4, the skydiver has a velocity of v(4) = 32(1 − e−4) feet
per second. Velocity with the open parachute satisfies the initial value
problem (

192
32

)
dv

dt
= 192 − 3v2, v(4) = 32(1 − e−4) for t ≥ 4.

This differential equation is separable and can be integrated using partial
fractions: ∫ [

1
v + 8

− 1
v − 8

]
dv = −

∫
8t dt.

This yields

ln
(

v + 8
v − 8

)
= −8t + ln

(
5 − 4e−4

3 − 4e−4

)
+ 32.

Solve for v(t) to obtain

v(t) =
8(1 + ke−8(t−4))
1 − ke−8(t−4)

for t ≥ 4.

We find using the initial condition that

k =
3 − 4e−4

5 − 4e−4
.

Terminal velocity is limt→∞ v(t) = 8 feet per second. The distance fallen
is

s(t) =
∫ t

0

v(ξ) dξ = 32(t − 1 + e−t)
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for 0 ≤ t ≤ 4, while

s(t) = 32(3 + e−4) + 8(t − 4) + 2 ln(1 − ke−8(t−4)) − 2 ln
(

2
5 − 4e−4

)

for t ≥ 4.

4. When fully submerged the buoyant force will be FB = (1)(2)(3)(62.5) =
375 pounds upward. The mass is m = 384/32 = 12 slugs. The velocity
v(t) of the sinking box satisfies

12
dv

dt
= 384 − 375 − 1

2
v; v(0) = 0.

This linear problem has the solution

v(t) = 18(1 − e−t/24).

In t seconds the box has sunk s(t) = 18(t + 24e−t/24 − 24) feet. From v(t)
we find the terminal velocity

lim
t→∞ v(t) = 18

feet per second. To answer the question about velocity when the box
reaches the bottom s = 100, we would normally solve s(t) = 100 and
substitute this t into the velocity. This would require a numerical solution,
which can be done. However, there is another approach we can also use.
Find t∗ so that v(t∗) = 10 feet per second, and calculate s(t∗) to see how
far the box has fallen. With this approach we solve 18(1 − e−t/24) = 10
to obtain t∗ = 24 ln(9/4) seconds. Now compute

s(t∗) = 432 ln(9/4) − 240 ≈ 110.3

feet. Therefore at the bottom s = 100, the box has not yet reached a
velocity of 10 feet per second.

5. If the box loses 32 pounds of material on impact with the bottom, then
m = 11 slugs. Now

11
dv

dt
= −352 + 375 − 1

2
v; v(0) = 0

in which we have taken up as the positive direction. This gives us

v(t) = 46(1 − e−t/22)

so the distance traveled up from the bottom is

s(t) = 46(t + 22e−t/22 − 22)

feet. Solve s(t) = 100 numerically to obtain t ≈ 10.56 seconds. The
surfacing velocity is approximately v(10.56) ≈ 17.5 feet per second.
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6. The statement of gravitational attraction inside the Earth gives v′(t) =
−kr, where r is the distance to the Earth’s center. When r = R, the
acceleration is g, so k = −g/R and v′(t) = −gr/R. Use the chain rule to
write

dv

dt
=

dv

dr

dr

dt
= v

dv

dr
.

This gives us the separable equation

v
dv

dr
= −gr

R
,

with the condition v(R) = 0. Integrate to obtain

v2 = gR − gr2

R
.

Put r = 0 to get the speed at the center of the Earth. This is v =
√

gR =√
24 ≈ 4.9 miles per second.

7. Let θ be the angle the chord makes with the vertical. Then

m
dv

dt
= mg cos(θ); v(0) = 0.

This gives us s(t) = 1
2gt2 cos(θ), so the time of descent is

t =
(

2s

g cos(θ)

)1/2

,

where s is the length of the chord. By the law of cosines, the length of
this chord satisfies

s2 = 2R2 − 2R2 cos(π − 2θ) = 2R2(1 + cos(2θ)) = 4R2 cos2(θ).

Therefore

t = 2

√
R

g
,

and this is independent of θ.

8. The loop currents in Figure 1.13 satisfy the equations

10i1 + 15(i1 − i2) = 10
15(i2 − i1) + 30i2 = 0

so

i1 =
1
2

amp and i2 =
1
6

amp.
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9. The capacitor charge is modeled by

250(103)i +
1

2(10−6)
q = 80; q(0) = 0.

Put i = q′ to obtain, after some simplification,

q′ + 2q = 32(10−5),

a linear equation with solution q(t) = 16(10−5)(1 − e−2t). The capacitor
voltage is

EC =
1
C

q = 80(1 − e−2t).

The voltage reaches 76 volts when t = (1/2) ln(20), which is approximately
1.498 seconds after the switch is closed. Calculate the current at this time
by

1
2

ln(20)i = q′(ln(20)/2) = 32(10−5)e− ln(20) = 16 micro amps.

10. The loop currents satisfy

5(i′1 − i′2) + 10i2 = 6,

−5i′1 + 5i′2 + 30i2 + 10(q2 − q3) = 0,

−10q2 + 10q3 + 15i3 +
5
2
q3 = 0.

Since q1(0+) = q2(0+) = q3(0+) = 0, then from the third equation we
have i3(0+) = 0. Add the three equations to obtain

10i1(0+) + 30i2(0+) = 6.

From the upper node between loops 1 and 2, we conclude that i1(0+) =
i2(0+). Therefore

i1(0+) = i2(0+) =
3
20

amps.

11. (a) Calculate

i′(t) =
E

R
e−Rt/L > 0,

implying that the current increases with time.

(b) Note that (1 − e−1) = 0.63+, so the inductive time constant is t0 =
L/R.

(c) For i(0) �= 0, the time to reach 63 percent of E/R is

t0 =
L

R
ln

(
e(E − Ri(0))

E

)
,

which decreases with i(0).
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12. (a) For

q′ +
1

RC
q =

E

R
; q(0) = q0,

the differential equation is linear with integrating factor et/RC . The dif-
ferential equation becomes

(qet/RC)′ =
E

R
et/RC

so
q(t) = EC + ke−t/RC .

q(0) = q0 gives k = q0 − EC, so

q(t) = EC + (q0 − EC)e−T/RC .

(b) limt→∞ q(t) = EC, and this independent of q0.

(c) If q0 > EC, qmax = q(0) = q0, there is no minimum in this case
but q(t) decreases toward EC. If q0 = EC, then q(t) = EC for all t. If
q0 < EC, qmin = q(0) = q0 and there is no maximum in this case, but
q(t) increases toward EC.

(d) To reach 99 percent of the steady-state value, solve

EC + (q0 − EC)e−t/RC = EC(1 ± 0.01),

so

t = RC ln
(

q0 − EC

0.1EC

)
.

13. The differential equation of the given family is

dy

dx
=

4x

3
.

Orthogonal trajectories satisfy

dy

dx
= − 3

4x

and are given by

y = −3
4

ln |x| + c.

14. Differentiate x + 2y = k implicitly to obtain the differential equation
y′ = −1/2 of this family. The orthogonal trajectories satisfy y′ = 2, and
are the graphs of y = 2x + c.
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15. The differential equation of the family is

y′ = 2kx =
2x(y − 1)

x2
=

2(y − 1)
x

.

Orthogonal trajectories satisfy y′ = x/2(y − 1) and are the graphs of the
family of ellipses

(y − 1)2 +
1
2
x2 = c.

16. The differential equation of the given family is dy/dx = −x/2y. The
orthogonal trajectories satisfy dy/dx = 2y/x and are given by y = cx2, a
family of parabolas.

17. The differential equation of the given family is found by solving for k and
differentiating to obtain k = ln(y)/x, so

dy

dx
=

y ln(y)
x

.

Orthogonal trajectories satisfy

dy

dx
= − x

y ln(y)
.

This is separable with solutions

y2(ln(y2) − 1) = c − 2x2.

18. At time t = 0, assume that the dog is at the origin of an x, y - system
and the man is located at (A, 0) on the x - axis. The man moves directly
upward into the first quadrant and at time t is at (A, vt). The position
of the dog at time t > 0 is (x, y) and the dog runs with speed 2v, always
directly toward his master. At time t > 0, the man is at (A, vt), the dot is
at (x, y), and the tangent to the dog’s path joins these two points. Thus

dy

dx
=

vt − y

A − x

for x < A. To eliminate t from this equation use the fact that during the
time the man has moved vt units upward, the dog has run 2vt units along
his path. Thus

2vt =
∫ x

0

[
1 +

(
dy

dξ

)2
]1/2

dξ.

Use this integral to eliminate the vt term in the original differential equa-
tion to obtain

2(A − x)y′(x) =
∫ x

0

[
1 +

(
dy

dξ

)2
]1/2

dξ − 2y.
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Differentiate this equation to obtain

2(A − x)y′′ − 2y′ = (1 + (y′)2)1/2 − 2y′,

or
2(A − x)y′′ = (1 + (y′)2)1/2,

subject to y(0) = y′(0) = 0. Let u = y′ to obtain the separable equation

1√
1 + u2

du =
1

2(A − x)
dx.

This has the solution

ln(u +
√

1 + u2) = −1
2

ln(A − x) + c.

Using y′(0) = u(0) = 0 gives us

u +
√

1 + u2 =
√

A√
A − x

,

or, equivalently,

y′ +
√

(1 + (y′)2) =
√

A√
A − x

; y(0) = 0.

From the equation for y′′, we obtain√
1 + (y′)2 = 2(A − x)y′′,

so

y′ + 2(A − x)y′′ =
√

A√
A − x

; y(0) = y′(0) = 0

for x < A. Let w = y′ to obtain the linear first order equation

w′ +
1

2(A − x)
w =

√
A

2(A − x)3/2
.

An integrating factor is 1/
√

A − x and we can write

d

dx

[
w√

A − x

]
=

√
A

2(A − x)2
.

The solution, subject to w(0) = 0, is

w(x) =
A√
2

1√
A − x

− 1
2
√

A

√
A − x =

dy

dx
.

Integrate one last time to obtain

y(x) = −
√

A
√

A − x +
1

3
√

A
(A − x)1/2 +

2
3
A,
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in which we have used y(0) = 0 to evaluate the constant of integration.
The dog catches the man at x = A, so they meet at (A, 2A/3). Since this
is also (A, vt) when they meet, we conclude that vt = 2A/3, so they meet
at time

t =
2A

3v
.

19. (a) Clearly each bug follows the same curve of pursuit relative to the corner
from which it started. Place a polar coordinate system as suggested and
determine the pursuit curve for the bug starting at θ = 0, r = a/

√
2.

At any time t > 0, the bug will be at (f(θ), θ) and its target will be at
(f(θ), θ + π/2), and

dy

dx
=

dy/dθ

dx/dθ
=

f ′(θ) sin(θ) + f(θ) cos(θ)
f ′(θ) cos(θ) − f(θ) sin(θ)

.

On the other hand, the tangent direction must be from (f(θ), θ) to (f(θ), θ+
π/2), so

dy

dx
=

f(θ) sin(θ + π/2) − f(θ) sin(θ)
f(θ) cos(θ + π/2) − f(θ) cos(θ)

=
cos(θ) − sin(θ)
− sin(θ) − cos(θ)

=
sin(θ) − cos(θ)
sin(θ) + cos(θ)

.

Equate these two expressions for dy/dx and simplify to obtain

f ′(θ) + f(θ) = 0

with f(0) = a/
√

2. Then

r = f(θ) =
a√
2
e−θ

is the polar coordinate equation of the pursuit curve.

(b) The distance traveled by each bug is

D =
∫ ∞

0

√
(r′)2 + r2 dθ

=
∫ ∞

0

[(
a√
2
e−θ

)2

+
(−a√

2
e−θ

)2
]1/2

dθ

= a

∫ ∞

0

e−θ dθ = a.

(c) Since r = f(θ) = ae−θ/
√

2 > 0 for all θ, no bug reaches its quarry.
The distance between pursuer and quarry is ae−θ.
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20. (a) Assume the disk rotates counterclockwise with angular velocity ω ra-
dians per second and the bug steps on the rotating disk at point (a, 0).
By the chain rule,

dr

dt
=

dr

dθ

dθ

dt
,

so
dr

dθ
= − v

ω
.

Then

r = c − θv

ω
, r(0) = a

gives us

r(θ) = a − θv

ω
.

This is a spiral.

(b) To reach the center, solve r = 0 = a − θv/ω to get θ = aω/v radians,
or θ = aω/2πv revolutions.

(c) The distance traveled is

s =
∫ aω/v

0

√
r2 + (r′)2 dθ

=
∫ aω/v

0

√(
a − vθ

ω

)2

+
( v

ω

)2

dθ.

To evaluate this integral let θ = −z + aω/v, so

s =
v

ω

∫ aω/v

0

√
1 + z2 dz

=
1
2

[
aω

v2

√
aω2 + v2 + ln

(
aω +

√
ω2 + v2

v

)]
.

21. Let x(t) denote the length of chain hanging down from the table at time t,
and note that once the chain starts moving, all 24 feet move with velocity
v. The motion is modeled by

ρx =
24ρ

g

dv

dt
=

3ρ

4
v

dv

dx
,

with v(6) = 0. Thus x2 = 3
4v2 + c and v(6) = 0 gives c = 36, so

v2 =
4
3
(x2 − 36).
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When the end leaves the table, x = 24 so v = 12
√

5 ≈ 26.84 feet per
second. The time is

tf =
∫ 24

6

1
v(x)

dx =
∫ 24

6

√
3

2
√

x2 − 36
dx

=
√

3
2

ln(6 +
√

35) ≈ 2.15

seconds.

22. The force pulling the chain off the table is due to the four feet of chain
hanging between the table and the floor. Let x(t) denote the distance the
free end of the chain on the table has moved. The motion is modeled by

4ρ =
d

dt

[
(22 − x)

ρ

g
v

]
; v = 0 when x = 0.

Rewrite this as
128 + v2 = (22 − x)v

dv

dx
,

a separable differential equation which we solve to get

c − ln |22 − x| =
1
2

ln(128 + v2)

Since v = 0 when x = 0, then c = ln(176
√

2). The end of the chain leaves
the table when x = 18, so at this time

v =
√

3744 ≈ 61.19 feet per second.

1.6 Existence and Uniqueness Questions

1. Both f(x, y) = sin(xy) and ∂f/∂y = x cos(xy) are continuous (for all
(x, y)).

2. f(x, y) = ln |x − y| and
∂f

∂y
= − 1

x − y

are continuous on a sufficiently small rectangle about (3, π), for example,
on a square centered at (3, π) and having side length 1/100.

3. Both f(x, y) = x2 − y2 + 8x/y and

∂f

∂y
= −2y − 8x

y2

are continuous on a sufficiently small rectangle centered at (3,−1), for
example, on the square of side length 1.
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4. Both f(x, y) = cos(exy) and ∂f/∂y = −xexy sin(exy) are continuous over
the entire plane.

5. By taking |y′| = y′, we get y′ = 2y and the initial value problem has the
solution y(x) = y0e

2(x−x0). However, if we take |y′| = −y′, then the initial
value problem has the solution y(x) = y0e

−2(x−x0).

In this problem we have |y′| = 2y = f(x, y), so we actually have y′ = ±2y,
and f(x, y) = ±2y. This is not even a function, so the terms of Theorem
1.2 do not apply and the theorem offers no conclusion.

6. (a) Since both f(x, y) = 2−y and ∂f/∂y = −1 are continuous everywhere,
the initial value problem has a unique solution. In this case the solution
is easy to find: y = 2 − e−x. This is the answer to (b).

(c)

y0 = 1, y1 = 1 +
∫ x

0

dt = 1 + x,

y2 = 1 +
∫ x

0

(1 − t) dt = 1 + x − x2

2
,

y3 = 1 +
∫ x

0

(
1 − t +

t2

2

)
dt = 1 + x − x2

2
+

x3

3!
,

y4 = 1 +
∫ x

0

(
1 − t +

t2

2
− t3

3!

)
dt = 1 + x − x2

2
+

x3

3!
− x4

4!
,

y5 = 1 +
∫ x

0

y4(t) dt = 1 + x − x2

2
+

x3

3!
− x4

4!
+

x5

5!
,

y6 = 1 +
∫ x

0

y5(t) dt = 1 + x − x2

2
+

x3

3!
− x4

4!
+

x5

5!
− x6

6!
.

Based on these computations, we conjecture that

yn(x) = 1 + x − x2

2
+

x3

3!
− x4

4!
+

x5

5!
+ · · · + (−1)n+1 xn

n!

(d)

2 − e−x = 2 −
(

1 + x − x2

2
+

x3

3!
− x4

4!
+ · · · + (−1)n xn

n!

)

= 1 + x − x2

2!
+

x3

3!
− · · · + (−1)n+1 xn

n!
+ · · ·

Since

2 − e−x = 2 − lim
n→∞

n∑
k=0

(−1)k xk

k!
= lim

n→∞ yn(x),

the Picard iterates converge to the unique solution of the initial value
problem.
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7. (a) Since both f(x, y) = 4 + y and ∂f/∂y = 1 are continuous everywhere,
the initial value problem has a unique solution.

(b) This linear differential equation is easily solved to yield y = −4 + 7ex

as the unique solution of the initial value problem.

(c)

y0 = 3, y1 = 3 +
∫ x

0

7 dt = 3 + 7x,

y2 = 3 +
∫ x

0

(7 + 7t) dt = 3 + 7x + 7
x2

2
,

y3 = 3 +
∫ x

0

(
7 + 7t + 7

t2

2

)
dt = 3 + 7x + 7

x2

2
+ 7

x3

3!
,

y4 = 3 +
∫ x

0

(
7 + 7t + 7

t2

2
+ 7

t3

3!

)
dt = 3 + 7x + 7

x2

2
+ 7

x3

3!
+ 7

x4

4!
,

y5 = 3 +
∫ x

0

y4(t) dt = 3 + 7x + 7
x2

2
+ 7

x3

3!
+ 7

x4

4!
+ 7

x5

5!
,

y6 = 3 +
∫ x

0

y5(t) dt = 3 + 7x + 7
x2

2
+ 7

x3

3!
+ 7

x5

5!
+ 7

x6

6!
.

(d) We conjecture that

yn(x) = 3 + 7x + 7
x2

2
+ 7

x3

3!
+ · · · + 7

xn

n!
.

Note that

yn(x) = −4 + 7
n∑

k=0

xk

k!

and that

lim
n→∞ yn(x) = −4 + 7

∞∑
k=0

xk

k!
= −4 + 7ex.

Thus the Picard iterates converge to the solution.

8. (a) Both f(x, y) = 2x2 and ∂f/∂y = 0 are continuous everywhere, so the
initial value problem has a unique solution.

(b) The solution is

y =
2
3
x3 +

7
3
.

(c)

y0 = 3, y1 = 3 +
∫ x

1

2t2 dt =
2
3
x3 +

7
3
.

Because f(x, y) is independent of y, yn(x) = y1(x) for all n.
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(d) The sequence of Picard iterates is a constant sequence. We can write

y =
2
3
x3 +

7
3

= 3 + 2(x − 1) + 2(x − 1)2 +
2
3
(x − 1)3

and this is the Taylor expansion of the solution about 1. For n ≥ 3 the
nth partial sum of this finite series is the solution. Certainly yn → y as
n → ∞.

9. (a) f(x, y) = cos(x) and ∂f/∂y = 0 are continuous for all (x, y), so the
problem has a unique solution.

(b) The solution is y = 1 + sin(x).

(c)

y0 = 1, y1 = 1 +
∫ x

π

cos(t) dt = 1 + sin(x).

In this example, yn = y1 for n = 2, 3, · · · .
(d) For n ≥ 1,

y = 1 + sin(x) = 1 +
∞∑

k=0

(−1)2k+1x2k+1

(2k + 1)!
.

The nth partial sum Tn of this Taylor series does not agree with the nth
Picard iterate yn(x). However,

lim
n→∞Tn(x) = lim

n→∞ yn(x) = 1 + sin(x),

so both sequences converge to the unique solution.
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