Chapter 1 Solutions

Case Study 1: Chip Fabrication Cost

1.1 a. Yield $=1 /(1+(0.04 \times 2))^{14}=0.34$
b. It is fabricated in a larger technology, which is an older plant. As plants age, their process gets tuned, and the defect rate decreases.
1.2 a. Phoenix:

$$
\begin{gathered}
\text { Dies per wafer }=\left(\pi \times(45 / 2)^{2}\right) / 2-(\pi \times 45) / \mathrm{sqrt}(2 \times 2)=795-70.7=724.5=724 \\
\text { Yield }=1 /(1+(0.04 \times 2))^{14}=0.340 \\
\text { Profit }=724 \times 0.34 \times 30=\$ 7384.80
\end{gathered}
$$

b. Red Dragon:

$$
\begin{gathered}
\text { Dies per wafer }=\left(\pi \times(45 / 2)^{2}\right) / 2-(\pi \times 45) / \mathrm{sqrt}(2 \times 1.2)=1325-91.25=1234 \\
\text { Yield }=1 /(1+(0.04 \times 1.2))^{14}=0.519 \\
\text { Profit }=1234 \times 0.519 \times 15=\$ 9601.71
\end{gathered}
$$

c. Phoenix chips: $25,000 / 724=34.5$ wafers needed Red Dragon chips: $50,000 / 1234=40.5$ wafers needed

Therefore, the most lucrative split is 40 Red Dragon wafers, 30 Phoenix wafers.
1.3 a. Defect-free single core $=$ Yield $=1 /(1+(0.04 \times 0.25))^{14}=0.87$

Equation for the probability that N are defect free on a chip:
\#combinations $\times(0.87)^{N} \times(1-0.87)^{8-N}$

\# defect-free	\# combinations	Probability
8	1	0.32821167
7	8	0.39234499
6	28	0.20519192
5	56	0.06132172
4	70	0.01145377
3	56	0.00136919
2	28	0.0001023
1	8	$4.3673 \mathrm{E}-06$
0	1	$8.1573 \mathrm{E}-08$

Yield for Phoenix ${ }^{4}:(0.39+0.21+0.06+0.01)=0.57$
Yield for Phoenix ${ }^{2}:(0.001+0.0001)=0.0011$
Yield for Phoenix ${ }^{1}$: 0.000004
b. It would be worthwhile to sell Phoenix ${ }^{4}$. However, the other two have such a low probability of occurring that it is not worth selling them.
c.

$$
\$ 20=\frac{\text { Wafer size }}{\text { odd dpw } \times 0.28}
$$

Step 1: Determine how many Phoenix4 chips are produced for every Phoenix 8 chip.

There are 57/33 Phoenix4 chips for every Phoenix8 chip $=1.73$

$$
\$ 30+1.73 \times \$ 25=\$ 73.25
$$

Case Study 2: Power Consumption in Computer Systems

1.4 a. Energy: 1/8. Power: Unchanged.
b. Energy: Energy ${ }_{\text {new }} /$ Energy $_{\text {old }}=(\text { Voltage } \times 1 / 8)^{2} /$ Voltage $^{2}=0.156$

Power: Power $_{\text {new }} /$ Power $_{\text {old }}=0.156 \times($ Frequency $\times 1 / 8) /$ Frequency $=0.00195$
c. Energy: Energy ${ }_{\text {new }} /$ Energy $_{\text {old }}=(\text { Voltage } \times 0.5)^{2} /$ Voltage $^{2}=0.25$

Power: Power $_{\text {new }} /$ Power $_{\text {old }}=0.25 \times($ Frequency $\times 1 / 8) /$ Frequency $=0.0313$
d. 1 core $=25 \%$ of the original power, running for 25% of the time.

$$
0.25 \times 0.25+(0.25 \times 0.2) \times 0.75=0.0625+0.0375=0.1
$$

1.5 a. Amdahl's law: $1 /(0.8 / 4+0.2)=1 /(0.2+0.2)=1 / 0.4=2.5$
b. 4 cores, each at $1 /(2.5)$ the frequency and voltage

Energy: Energy ${ }_{\text {quad }} /$ Energy $_{\text {single }}=4 \times(\text { Voltage } \times 1 /(2.5))^{2} /$ Voltage $^{2}=0.64$
Power: Power $_{\text {new }} /$ Power $_{\text {old }}=0.64 \times($ Frequency $\times 1 /(2.5)) /$ Frequency $=0.256$
c. 2 cores +2 ASICs vs. 4 cores

$$
(2+(0.2 \times 2)) / 4=(2.4) / 4=0.6
$$

1.6 a. Workload A speedup: $225,000 / 13,461=16.7$

Workload B speedup: $280,000 / 36,465=7.7$
$1 /(0.7 / 16.7+0.3 / 7.7)$
b. General-purpose: $0.70 \times 0.42+0.30=0.594$

GPU: $0.70 \times 0.37+0.30=0.559$
TPU: $0.70 \times 0.80+0.30=0.886$
c. General-purpose: $159 \mathrm{~W}+(455 \mathrm{~W}-159 \mathrm{~W}) \times 0.594=335 \mathrm{~W}$

GPU: $357 \mathrm{~W}+(991 \mathrm{~W}-357 \mathrm{~W}) \times 0.559=711 \mathrm{~W}$
TPU: $290 \mathrm{~W}+(384 \mathrm{~W}-290 \mathrm{~W}) \times 0.86=371 \mathrm{~W}$
d.

Speedup	A	B	C
GPU	2.46	2.76	1.25
TPU	41.0	21.2	0.167
$\%$ Time	0.4	0.1	0.5

GPU: $1 /(0.4 / 2.46+0.1 / 2.76+0.5 / 1.25)=1.67$
TPU: $1 /(0.4 / 41+0.1 / 21.2+0.5 / 0.17)=0.33$
e. General-purpose: $14,000 / 504=27.8 \geq 28$

GPU: $14,000 / 1838=7.62 \geq 8$
TPU: $14,000 / 861=16.3 \geq 17$
d. General-purpose: $2200 / 504=4.37 \geq 4,14,000 /(4 \times 504)=6.74 \geq 7$ GPU: $2200 / 1838=1.2 \geq 1,14,000 /(1 \times 1838)=7.62 \geq 8$
TPU: $2200 / 861=2.56 \geq 2,14,000 /(2 \times 861)=8.13 \geq 9$

Exercises

1.7 a. Somewhere between 1.4^{10} and 1.55^{10}, or $28.9-80 x$
b. 6043 in 2003, 52% growth rate per year for 12 years is $60,500,000$ (rounded)
c. 24,129 in $2010,22 \%$ growth rate per year for 15 years is $1,920,000$ (rounded)
d. Multiple cores on a chip rather than faster single-core performance
e. $2=x^{4}, x=1.032,3.2 \%$ growth
1.8 a. 50%
b. Energy: Energy ${ }_{\text {new }} /$ Energy $_{\text {old }}=(\text { Voltage } \times 1 / 2)^{2} /$ Voltage $^{2}=0.25$
1.9 a. 60%
b. $0.4+0.6 \times 0.2=0.58$, which reduces the energy to 58% of the original energy
c. newPower/oldPower $=1 / 2$ Capacitance $\times(\text { Voltage } \times 0.8)^{2} \times($ Frequency $\times 0.6) / 1 / 2$

Capacitance \times Voltage \times Frequency $=0.8^{2} \times 0.6=0.256$ of the original power.
d. $0.4+0.3 \times 2=0.46$, which reduces the energy to 46% of the original energy
1.10 a. $10^{9} / 100=10^{7}$
b. $10^{7} / 10^{7}+24=1$
c. [need solution]
1.11 a. $35 / 10,000 \times 3333=11.67$ days
b. There are several correct answers. One would be that, with the current system, one computer fails approximately every 5 min .5 min is unlikely to be enough time to isolate the computer, swap it out, and get the computer back on line again. 10 min , however, is much more likely. In any case, it would greatly extend the amount of time before $1 / 3$ of the computers have failed at once. Because the cost of downtime is so huge, being able to extend this is very valuable.
c. $\$ 90,000=(x+x+x+2 x) / 4$
$\$ 360,000=5 x$
$\$ 72,000=x$
4 th quarter $=\$ 144,000 / \mathrm{h}$

Figure S. 1 Plot of the equation: $y=100 /((100-x)+x / 10)$.
1.12 a. See Figure S.1.
b. $2=1 /((1-x)+x / 20)$
$10 / 19=x=52.6 \%$
c. $(0.526 / 20) /(0.474+0.526 / 20)=5.3 \%$
d. Extra speedup with 2 units: $1 /(0.1+0.9 / 2)=1.82$. $1.82 \times 20-36.4$. Total speedup: 1.95. Extra speedup with 4 units: $1 /(0.1+0.9 / 4)=3.08$. $3.08 \times 20-61.5$. Total speedup: 1.97
1.13 a. old execution time $=0.5$ new $+0.5 \times 10$ new $=5.5$ new
b. In the original code, the unenhanced part is equal in time to the enhanced part (sped up by 10), therefore:
$(1-x)=x / 10$
$10-10 x=x$
$10=11 x$
$10 / 11=x=0.91$
1.14 a. $1 /(0.8+0.20 / 2)=1.11$
b. $1 /(0.7+0.20 / 2+0.10 \times 3 / 2)=1.05$
c. fp ops: $0.1 / 0.95=10.5 \%$, cache: $0.15 / 0.95=15.8 \%$
1.15 a. $1 /(0.5+0.5 / 22)=1.91$
b. $1 /(0.1+0.90 / 22)=7.10$
c. $41 \% \times 22=9$. A runs on 9 cores. Speedup of A on 9 cores: $1 /(0.5+0.5 / 9)=$ 1.8 Overall speedup if 9 cores have 1.8 speedup, others none: $1 /(0.6+0.4 / 1.8)$ $=1.22$
d. Calculate values for all processors like in c. Obtain: 1.8, 3, 1.82, 2.5, respectively.
e. $1 /(0.41 / 1.8+0.27 / 3+0.18 / 1.82+0.14 / 2.5)=2.12$
1.16 a. $1 /(0.2+0.8 / N)$
b. $1 /(0.2+8 \times 0.005+0.8 / 8)=2.94$
c. $1 /(0.2+3 \times 0.005+0.8 / 8)=3.17$
d. $1 /(.2+\log N \times 0.005+0.8 / N)$
e. $d / d N(1 /((1-P)+\log N \times 0.005+P / N)=0)$

