
CHAPTER 2

DTMCs: Transient Behavior

Modeling Exercises

2.1. The state space of {Xn, n ≥ 0} is S = {0, 1, 2, 3, ...}. Suppose Xn = i.
Then the age of the lightbulb in place at time n is i. If this light bulb does not fail at
time n + 1, then Xn+1 = i + 1. If it fails at time n + 1, then a new lightbulb is put
in at time n+ 1 with age 0, making Xn+1 = 0. Let Z be the lifetime of a lightbulb.
We have

P(Xn+1 = 0|Xn = i,Xn−1, ..., X0) = P(lightbulb of age i fails at age i+ 1)

= P(Z = i+ 1|Z > i)

=
pi+1∑∞
j=i+1 pj

Similarly

P(Xn+1 = 0|Xn = i,Xn−1, ..., X0) = P(Z > i+ 1|Z > i)

=

∑∞
j=i+2 pj∑∞
j=i+1 pj

It follows that {Xn, n ≥ 0} is a success-runs DTMC with

pi =

∑∞
j=i+2 pj∑∞
j=i+1 pj

,

and
qi =

pi+1∑∞
j=i+1 pj

,

for i ∈ S.

2.2 The state space of {Yn, n ≥ 0} is S = {1, 2, 3, ...}. Suppose Yn = i > 1, then
the remaining life decreases by one at time n+ 1. Thus Xn+1 = i− 1. If Yn = 1, a
new light bulb is put in place at time n+ 1, thus Yn+1 is the lifetime of the new light
bulb. Let Z be the lifetime of a light bulb. We have

P(Yn+1 = i− 1|Xn = i,Xn−1, ..., X0) = 1, i ≥ 2,
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and
P(Xn+1 = k|Xn = 1, Xn−1, ..., X0) = P(Z = k) = pk, k ≥ 1.

2.3. Initially the urn has w + b balls. At each stage the number of balls in the urn
increases by k − 1. Hence after n stages, the urn has w + b+ n(k − 1) balls. Xn of
them are black, and the remaining are white. Hence the probability of getting a black
ball on the n+ 1st draw is

Xn

w + b+ n(k − 1)
.

If the n + 1st draw is black, Xn+1 = Xn + k − 1, and if it is white, Xn+1 = Xn.
Hence

P(Xn+1 = i|Xn = i) = 1− i

w + b+ n(k − 1)
,

and
P(Xn+1 = i+ k − 1|Xn = i) =

i

w + b+ n(k − 1)
.

Thus {Xn, n ≥ 0} is a DTMC, but it is not time homogeneous.

2.4. {Xn, n ≥ 0} is a DTMC with state space {0 = dead, 1 = alive} because the
movements of the cat and the mouse are independent of the past while the mouse is
alive. Once the mouse is dead, it stays dead. If the mouse is still alive at time n, he
dies at time n + 1 if both the cat and mouse choose the same node to visit at time
n+ 1. There are N − 2 ways for this to happen. In total there are (N − 1)2 possible
ways for the cat and the mouse to choose the new nodes. Hence

P(Xn+1 = 0|Xn = 1) =
N − 2

(N − 1)2
.

Hence the transition probability matrix is given by

P =

[
1 0

N−2
(N−1)2 1− N−2

(N−1)2

]
.

2.5. Let Xn = 1 if the weather is sunny on day n, and 2 if it is rainy on day n.
Let Yn = (Xn−1, Xn), be the vector of weather on day n − 1 and n, n ≥ 1. Now
suppose Yn = (1, 1). This means the weather was sunny on day n− 1 and n. Then,
it will be sunny on day n + 1 with probability .8 and the new weather vector will
be Yn+1 = (1, 1). On the other hand it will rain on day n + 1 with probability .2,
and the weather vector will be Yn+1 = (1, 2). These probabilities do not depend on
the weather up to time n − 2, i.e., they are independent of Y1, Y2, ...Yn−2. Similar
analysis in other states of Yn shows that {Yn, n ≥ 1} is a DTMC on state space
{(1, 1), (1, 2), (2, 1), (2, 2)} with the following transition probability matrix:

P =


0.8 0.2 0 0
0 0 .5 .5
.75 .25 0 0
0 0 0.4 0.6

 .
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2.6. The state space is S = {0, 1, · · · ,K}. Let

αi =

(
K

i

)
pi(1− p)K−i, 0 ≤ i ≤ K.

Thus, when a functioning system fails, i components fail simultaneously with prob-
ability αi, i ≥ 1. The {Xn, n ≥ 0} is a DTMC with transition probabilities:

p0,i = αi, 0 ≤ i ≤ K,

pi,i−1 = 1, 1 ≤ i ≤ K.

2.7. Suppose Xn = i. Then, Xn+1 = i + 1 if the first coin shows heads, while
the second shows tails, which will happen with probability p1(1− p2), independent
of the past. Similarly, Xn+1 = i− 1 if the first coin shows tails and the second coin
shows heads, which will happen with probability p2(1−p1), independent of the past.
If both coins show heads, or both show tails, Xn+1 = i. Hence, {Xn, n ≥ 0} is a
space homogeneous random walk on S = {...,−2,−1, 0, 1, 2, ...} (see Example 2.5)
with

pi = p1(1− p2), qi = p2(1− p1), ri = 1− pi − qi.

2.8. We define Xn, the state of the weather system on the nth day, as the length
of the current sunny or rainy spell. The state is k, (k = 1, 2, 3, ...), if the weather
is sunny and this is the kth day of the current sunny spell. The state is −k, (k =
1, 2, 3, ..), if the the weather is rainy and this is the kth day of the current rainy spell.
Thus the state space is S = {±1,±2,±3, ...}.

Now suppose Xn = k, (k = 1, 2, 3, ...). If the sunny spell continues for one
more day, then Xn+1 = k + 1, or else a rainy spell starts, and Xn+1 = −(k + 1).
Similarly, suppose Xn = −k. If the rainy spell continues for one more day, then
Xn+1 = −(k+ 1), or else a sunny spell starts, and Xn+1 = 1. The Markov property
follows from the fact that the lengths of the sunny and rainy spells are independent.
Hence, for k = 1, 2, 3, ...,

P(Xn+1 = k + 1|Xn = k) = pk,

P(Xn+1 = −1|Xn = k) = 1− pk,
P(Xn+1 = −(k + 1)|Xn = −k) = qk,

P(Xn+1 = 1|Xn = −k) = 1− qk.

2.9. Yn is the outcome of the nth toss of a six sided fair die. Sn = Y1 + ...Yn.
Xn = Sn (mod 7). Hence we see that

Xn+1 = Xn + Yn+1(mod 7).
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Since Yn s are iid, the above equation implies that {Xn, n ≥ 0} is a DTMC with
state space S = {0, 1, 2, 3, 4, 5, 6}. Now, for i, j ∈ S, we have

P(Xn+1 = j|Xn = i) = P(Xn + Yn+1(mod 7) = j|Xn = i)

= P(i+ Yn+1(mod 7) = j)

=

{
0 if i = j
1
6 if i 6= j.

Thus the transition probability matrix is given by

P =



0 1
6

1
6

1
6

1
6

1
6

1
6

1
6 0 1

6
1
6

1
6

1
6

1
6

1
6

1
6 0 1

6
1
6

1
6

1
6

1
6

1
6

1
6 0 1

6
1
6

1
6

1
6

1
6

1
6

1
6 0 1

6
1
6

1
6

1
6

1
6

1
6

1
6 0 1

6
1
6

1
6

1
6

1
6

1
6

1
6 0


.

2.10. State space of {Xn, n ≥ 0} is S = {0, 1, · · · , r − 1}. We have

Xn+1 = Xn + Yn+1(mod r),

which shows that {Xn, n ≥ 0} is a DTMC. We have

P(Xn+1 = j|Xn = i) = P(Yn+1 = (j − i)(mod r)) =

∞∑
m=0

αj−i+mr.

Here we assume that αk = 0 for k ≤ 0.

2.11. LetBn (Gn) be the bar the boy (girl) is in on the nth night. Then {(Bn, Gn), n ≥
0} is a DTMC on S = {(1, 1), (1, 2), (2, 1), (2, 2)} with the following transition
probability matrix:

P =


1 0 0 0

a(1− d) ad (1− a)(1− d) (1− a)d
(1− b)c (1− b)(1− c) bc b(1− c)

0 0 0 1

 .
The story ends in bar k if the bivariate DTMC gets absorbed in state (k, k), for
k = 1, 2.

2.12. Let Q be the transition probability matrix of {Yn, n ≥ 0}. Suppose Zm =
f(i), that the DTMC Y is in state i when the filled gas for the mth time. Then, the
student fills gas next after 11 − i days. The DTMC Y will be in state j at that time
with probability [Q11−i]ij . This shows that {Zm,m ≥ 0} is a DTMC with state
space {f(0), f(1), · · · , f(10)}, with transition probabilities

P(Zm+1 = f(j)|Zm = f(i)) = [Q11−i]ij .
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2.13. Following the analysis in Example 2.1b, we see that {Xn, n ≥ 0} is a
DTMC on state space S = {1, 2, 3, ..., k} with the following transition probabilities:

P(Xn+1 = i|Xn = i) = pi, 1 ≤ i ≤ k,

P(Xn+1 = i+ 1|Xn = i) = 1− pi, 1 ≤ i ≤ k − 1,

P(Xn+1 = 1|Xn = k) = 1− pk.

2.14. Let the state space be {0, 1, 2, 12}, where the state is 0 if both components
are working, 1 if component 1 alone is down, 2 i f component 2 alone is down, and
12 if components 1 and 2 are down. Let Xn be the state on day n. {Xn, n ≥ 0} is a
DTMC on {0, 1, 2, 12} with tr pr matrix

P =


α0 α1α2 α12

r1 1− r1 0 0
r2 0 1− r2 0
0 0 r1 1− r1

 .
Here we have assumed that if both components fail, we repair component 1 first, and
then component 2.

2.15. Let Xn be the pair that played the nth game. Then X0 = (1, 2). Suppose
Xn = (1, 2). Then the nth game is played between player 1 and 2. With probability
b12 player 1 wins the game, and the next game is played between players 1 and
3, thus making Xn+1 = (1, 3). On the other hand, player 2 wins the game with
probability b21, and the next game is played between players 2 and 3, thus making
Xn+1 = (2, 3). Since the probabilities of winning are independent of the past, it is
clear that {Xn, n ≥ 0} is a DTMC on state space {(1, 2), (2, 3), (1, 3)}. Using the
arguments as above, we see that the transition probabilities are given by

P =

 0 b21 b12

b23 0 b32

b13 b31 0

 .

2.16. Let Xn be the number of beers at home when Mr. Al Anon goes to the store.
Then {(Xn, Yn), n ≥ 0} is DTMC on state space

S = {(0, L), (1, L), (2, L), (3, L), (4, L), (0, H), (1, H), (2, H), (3, H), (4, H)}
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with the following transition probability matrix:

0 0 0 0 α 0 0 0 0 1− α
0 0 0 0 α 0 0 0 0 1− α
0 0 0 0 α 0 0 0 0 1− α
0 0 0 0 α 0 0 0 0 1− α
0 0 0 0 α 0 0 0 0 1− α

1− β 0 0 0 0 β 0 0 0 0
1− β 0 0 0 0 β 0 0 0 0

0 1− β 0 0 0 0 β 0 0 0
0 0 1− β 0 0 0 0 β 0 0
0 0 0 1− β 0 0 0 0 β 0


.

2.17. We see that
Xn+1 = max{Xn, Yn+1}.

Since the Yn’s are iid, {Xn, n ≥ 0} is a DTMC. The state space is S = {0, 1, · · · ,M}.
Now, for 0 ≤ i < j ≤M ,

pi,j = P(max{Xn, Yn+1} = j|Xn = i) = P(Yn = j) = αj .

Also,

pi,i = P(max{Xn, Yn+1} = i|Xn = i) = P(Yn ≤ i) =

i∑
k=0

αk.

2.18. Let Yn = u is the machine is up at time n and d if it is down at time n. If
Yn = u, let Xn be the remaining up time at time n; and if Yn = d, let Xn be the
remaining down time at time n. Then {(Xn, Yn), n ≥ 0} is a DTMC with state space

S = {(i, j) : i ≥ 1, j = u, d}

and transition probabilities

p(i,j),(i−1,j) = 1, i ≥ 2, j = u, d,

p(1,u),(i,d) = di, p(1,d),(i,u) = ui, i ≥ 1.

2.19. Let Xn be the number of messages in the inbox at 8:00am on day n. Ms.
Friendly answers Zn = Bin(Xn, p) emails on day n. henceXn−Zn = Bin(Xn, 1−
p) emails are left for the next day. Yn is the number messages that arrive during
24 hours on day n. Hence at the beginning of the next day there Xn+1 = Yn +
Bin(Xn, 1− p) in her mail box. Since {Yn, n ≥ 0} is iid, {Xn, n ≥ 0} is a DTMC.

2.20. Let Xn be the number of bytes in this buffer in slot n, after the input during
the slot and the removal (playing) of any bytes. We assume that the input during the
slot occurs before the removal. Thus

Xn+1 = max{min{Xn +An+1, B} − 1, 0}.
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Thus if Xn = 0 and there is no input, Xn+1 = 0. Similarly, if Xn = B, Xn+1 =
B − 1. The process {Xn, n ≥ 0} is a random walk on {0, ..., B − 1} with the
following transition probabilities:

p0,0 = α0 + α1, p0,1 = α2,

pi,i−1 = α0, pi,i = α1, pi,i+1 = α2, 0 < i < B − 1,

pB−1,B−1 = α1 + α2; pB−1,B−2 = α0.

2.21. Let Xn be the number of passengers on the bus when it leaves the nth stop.
Let Dn+1 be the number of passengers that alight at the (n + 1)st stop. Since each
person on board the bus gets off with probability p in an independent fashion, Dn+1

is Bin(Xn, p) random variable. Also, Xn − Dn+1 is a Bin(Xn, 1 − p) random
variable. Yn+1 is the number of people that get on the bus at the (n + 1)st bus stop.
Hence

Xn+1 = min{Xn −Dn+1 + Yn+1, B}.
Since {Yn, n ≥ 0} is a sequence of iid random variables, it follows from the above
recursive relationship, that {Xn, n ≥ 0} is a DTMC. The state space is {0, 1, ..., B}.
For 0 ≤ i ≤ B, and 0 ≤ j < B, we have

pi,j = P(Xn+1 = j|Xn = i)

= P(Xn −Dn+1 + Yn+1 = j|Xn = i)

= P(Yn+1 −Bin(i, p) = j − i)

=

i∑
k=0

P(Yn+1 −Bin(i, p) = j − i|Bin(i, p) = k)P(Bin(i, p) = k)

=

i∑
k=0

P(Yn+1 = k + j − i|Bin(i, p) = k)

(
i

k

)
pk(1− p)i−k

=

i∑
k=0

(
i

k

)
pk(1− p)i−kαk+j−i,

where we use the convention that αk = 0 if k < 0. Finally,

pi,B = 1−
B−1∑
j=0

pij .

2.22. The state space is {−1, 0, 1, 2, ..., k−1}. The system is in state -1 at time n if
it is in economy mode after the n-th item is produced (and possibly inspected). It is in
state i (1 ≤ i ≤ k) if it is in 100% inspection mode and i consecutive non-defective
items have been found so far. The transition probabilities are

p−1,0 = p/r, p−1,−1 = 1− p/r,

pi,i+1 = 1− p, pi,0 = p, 0 ≤ i ≤ k − 2
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pk−1,−1 = 1− p, pk−1,0 = p.

2.23. Xn is the amount on hand at the beginning of the nth day, and Dn is the
demand during the nth day. Hence the amount on hand at the end of the nth day is
Xn −Dn. If this is s or more, no order is placed, and hence the amount on hand at
the beginning of the (n+ 1)st day is Xn −Dn. On the other hand, if Xn −Dn < s,
then the inventory is brought upto S at the beginning of the next day, thus making
Xn+1 = S. Thus

Xn+1 =

{
Xn −Dn if Xn −Dn ≥ s,
S if Xn −Dn < s.

Since {Dn, n ≥ 0} are iid, {Xn, n ≥ 0} is a DTMC on state space {s, s+1, ..., S−
1, S}. We compute the transition probabilities next. For s ≤ j ≤ i ≤ S, j 6= S, we
have

P(Xn+1 = j|Xn = i) = P(Xn −Dn = j|Xn = i)

= P(Dn = i− j) = αi−j .

and for s ≤ i < S, j = S we have

P(Xn+1 = S|Xn = i) = P(Xn −Dn < s|Xn = i)

= P(Dn > i− s) =

∞∑
k=i−s

αk.

Finally

P(Xn+1 = S|Xn = S) = P(Xn −Dn < s, or Xn −Dn = S|Xn = S)

= P(Dn > S − s) + P(Dn = 0) =

∞∑
k=S−s+1

αk + α0.

The transition probability matrix is given below:

P =



α0 0 0 . . . 0 b0
α1 α0 0 . . . 0 b1
α2 α1 α0 . . . 0 b2
...

...
...

. . .
...

...
...

αS−s−1 αS−s−2 αS−s−3 . . . α0 bS−s−1

αS−s αS−s−1 αS−s−2 . . . α1 α0 + bS


,

where

bj = P(Dn > j) =

∞∑
k=j+1

αk.

2.24. The state space of {(Xn, Yn), n ≥ 0} is

S = {(i, j) : i ≥ 0, j = 1, 2}.
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Let

βik =

∞∑
j=k

αij , k ≥ 1, i = 1, 2.

The transition probabilities are given by (see solution to Modeling Exercise 2.1)

p(i,1),(i+1,1) = β1
i+2/β

1
i+1, i ≥ 0,

p(i,2),(i+1,2) = β2
i+2/β

2
i+1, i ≥ 0,

p(i,1),(0,j) = vjα
1
i+1/β

1
i+1, i ≥ 0,

p(i,2),(0,j) = vjα
2
i+1/β

2
i+1, i ≥ 0.

2.25. Xn is the number of bugs in the program just before running it for the nth
time. SupposeXn = k. Then no is discovered on the nth run with probability 1−βk,a
nd hence Xn+1 = k. A bug will be discovered on the n run with probability βk, in
which case Yn additional bugs are introduced, (with P(Yn = i) = αi, i = 0, 1, 2)
and Xn+1 = k − 1 + Yn. Hence, given Xn = k,

Xn+1 =

 k − 1 with probability βkα0 = qk
k with probability βkα1 + 1− βk = rk
k + 1 with probability βkα2 = pk

Thus {Xn, n ≥ 0} is a DTMC with state space {0, 1, 2, ...} with transition proba-
bility matrix

P =


1 0 0 0 0 . . .
q1 r1 p1 0 0 . . .
0 q2 r2 p2 0 . . .
0 0 q3 r3 p3 . . .
...

...
...

...
...

. . .

 .

2.26. Xn = number of active rumor mongers at time n.
Yn = number of individuals who have not heard the rumor up to and including time
n.
Zn = number of individuals who have heard the rumor up to and including time n,
but have stopped spreading it.
The rumor spreading process is modeled as a three dimensional process {(Xn, Yn, Zn), n ≥
0}. We shall show that it is a DTMC.
Since the total number of individuals in the colony is N , we must have

Xn + Yn + Zn = N, n ≥ 0.

Now let An be the number of individuals who hear the rumor for the first time at
time n+ 1. Now, an individual who has not heard the rumor by time n does not hear
it by time n+ 1 if each the Xn rumor mongers at time n fails to contact him at time
n+ 1. The probability of that is ((N − 2)/(N − 1))Xn . Hence

An ∼ Bin(Yn, 1− ((N − 2)/(N − 1))Xn).
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Similarly, let Bn be the number of active rumor-mongers at time n that become
inactive at tiem n + 1. An active rumor monger becomes inactive if he contacts a
person whos has already heard the rumor. The probability of that is (Xn + Yn −
1)/(N − 1). Hence

Bn ∼ Bin(Xn, (Xn + Yn − 1)/(N − 1)).

Now, from the definitions of the various random variables involved,

Xn+1 = Xn −Bn +An,

Yn+1 = Yn −An,
Zn+1 = Zn +Bn.

Thus {(Xn, Yn, Zn), n ≥ 0} is a DTMC.

2.27. {Xn, n ≥ 0} is a DTMC with state space S = {rr, dr, dd}, since gene type
of the n+1st generation only depends on that of the parents in the nth generation. We
are given that X0 = rr. Hence, the parents of the first generation are rr, dd. Hence
X1 is dr with probability 1. If Xn is dr, then the parents of the (n+ 1)st generation
are dr and dd. Hence the (n + 1)th generation is dr or dd with probability .5 each.
Once the nth generation is dd it stays dd from then on. Hence transition probability
matrix is given by

P =

 0 1 0
0 .5 .5
0 0 1

 .

2.28. Using the analysis in 2.27, we see that {Xn, n ≥ 0} is a DTMC with state
space S = {rr, dr, dd} with the following transition probability matrix:

P =

 .5 .5 0
.25 .5 .25
0 .5 .5

 .

2.29. Let Xn be the number of recipients in the nth generation. There are 20
recipients to begin with. Hence X0 = 20. Let Yi, n be the number of letters sent out
by the ith recipient in the nthe generation. The {Yi,n : n ≥ 0, i = 1, 2, ..., Xn} are
iid random variables with common pmf given below:

P(Yi,n = 0) = 1− α; P(Yi,n = 20 = α.

The number of recipients in the (n+ 1)st generation are given by

Xn+1 =

Xn∑
i=1

Yi,n.

Thus {Xn, n ≥ 0} is a branching process, following the terminology of Section 2.2.
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Note that we cannot start with X0 = 1 since we would need to use Y1,0 = 20 with
probability 1, which is different distribution from the other Yi,ns. This would invali-
date the assumptions of a branching process.

2.30. Let Xn be the number of backlogged packets at the beginning of the nth
slot. Furthermore, let In be the collision indicator defined as follows: In = id if
there are no transmissions in the (n− 1)st slot (idle slot), In = s if there is exactly 1
transmission in the (n− 1)st slot (successful slot), and In = e if there are 2 or more
transmissions in the (n − 1)st slot (error or collision in the slot). We shall model
the state of the system at the beginning of the n the slot by (Xn, In). Now suppose
Xn = i, In = s. Then, the backlogged packets retry with probability r. Hence, we
get

P(Xn+1 = i− 1, In+1 = s|Xn = i, In = s) = (1− p)N−iir(1− r)i−1,

P(Xn+1 = i, In+1 = s|Xn = i, In = s) = (N − i)p(1− p)N−i−1(1− r)i,
P(Xn+1 = i, In+1 = id|Xn = i, In = s) = (1− p)(N−i)(1− r)i,
P(Xn+1 = i, In+1 = e|Xn = i, In = s) = (1− p)(N−i)(1− (1− r)i − ir(1− r)i−1).

P(Xn+1 = i+ 1, In+1 = e|Xn = i, In = s) = (N − i)p(1− p)N−i−1(1− (1− r)i)

P(Xn+1 = i+ j, In+1 = e|Xn = i, In = s) =

(
N − i
j

)
pi(1− p)N−i−j , 2 ≤ j ≤ N − i.

Next suppose Xn = i, In = id. Then, the backlogged packets retry with probability
r′′ > r. The above equations become:

P(Xn+1 = i− 1, In+1 = s|Xn = i, In = id) = (1− p)N−iir′(1− r′)i−1,

P(Xn+1 = i, In+1 = s|Xn = i, In = id) = (N − i)p(1− p)N−i−1(1− r′)i,
P(Xn+1 = i, In+1 = id|Xn = i, In = id) = (1− p)(N−i)(1− r′)i,
P(Xn+1 = i, In+1 = e|Xn = i, In = id) = (1− p)(N−i)(1− (1− r′)i − ir′(1− r′)i−1).

P(Xn+1 = i+ 1, In+1 = e|Xn = i, In = id) = (N − i)p(1− p)N−i−1(1− (1− r′)i)

P(Xn+1 = i+ j, In+1 = e|Xn = i, In = id) =

(
N − i
j

)
pi(1− p)N−i−j , 2 ≤ j ≤ N − i.

Finally, suppose Xn = i, In = e. Then, the backlogged packets retry with probabil-
ity r′′ < r. The above equations become:

P(Xn+1 = i− 1, In+1 = s|Xn = i, In = e) = (1− p)N−iir′′(1− r′′)i−1,

P(Xn+1 = i, In+1 = s|Xn = i, In = e) = (N − i)p(1− p)N−i−1(1− r′′)i,
P(Xn+1 = i, In+1 = id|Xn = i, In = e) = (1− p)(N−i)(1− r′′)i,
P(Xn+1 = i, In+1 = e|Xn = i, In = e) = (1− p)(N−i)(1− (1− r′′)i − ir′′(1− r′′)i−1).

P(Xn+1 = i+ 1, In+1 = e|Xn = i, In = e) = (N − i)p(1− p)N−i−1(1− (1− r′′)i)

P(Xn+1 = i+ j, In+1 = e|Xn = i, In = e) =

(
N − i
j

)
pi(1− p)N−i−j , 2 ≤ j ≤ N − i.

This shows that {(Xn, In), n ≥ 0} is a DTMC with transition probabilities given
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above.

2.31. Let Xn be the number of packets ready for transmission at time n. Let Yn be
the number of packets that arrive during time (n, n + 1]. If Xn = 0, no packets are
transmitted during the nth slot and we have

Xn+1 = Yn.

If Xn > 0, exactly one packet is transmitted during the nth time slot. Hence,

Xn+1 = Xn − 1 + Yn.

Since {Yn, n ≥ 0} are iid, we see that {Xn, n ≥ 0} is identical to the DTMC given
in Example 2.16.

2.32. Let Yi,n, i = 1, 2, be the number of non-defective items in the inventory
of the ith machine at time n, after all production and any assembly at time n is
done. Since the assembly is instantaneous, both Y1,n and Y2,n cannot be positive
simultaneously. Now define

Xn = B2 + Y1,n − Y2,n.

The state space of {Xn, n ≥ 0} is S = {0, 1, 2, ..., B1 +B2 − 1,M1 +M2}. Now,

Xn = k > B2 ⇒ Y1,n = k −B2, Y2,n = 0,

Xn = k < B2 ⇒ Y1,n = 0, Y2,n = B2 − k,
Xn = k = B2 ⇒ Y1,n = 0, Y2,n = 0.

Thus Xn contains complete information about Y1,n and Y2,n. {Xn, n ≥ 0} is a
random walk on S as in Example 2.5 with

pn,n+1 = pn =

{
α1 if n = 0,
α1(1− α2) if 0 < n < B1 +B2,

pn,n−1 = qn =

{
α2 if n = B1 +B2,
α2(1− α1) if 0 < n < B1 +B2,

pn,n = rn =

 1− α1 if n = 0,
α1α2 + (1− α1)(1− α2) if 0 < n < B1 +B2,
1− α2 if n = B1 +B2.

2.33. Let Xn be the age of the light bulb in place at time n. Using the solution
to Modeling Exercise 2.1, we see that {Xn, n ≥ 0} is a success-runs DTMC on
{0, 1, ...,K − 1} with

qi = pi+1/bi+1, pi = 1− qi, 0 ≤ i ≤ K − 2, qK−1 = 1,

where bi = P (Zn ≥ i) =
∑∞
j=i pj .

2.34. The same three models of reader behavior in Section 2.3.7 work if we con-
sider a citation from paper i to paper j as link from webpage i to web page j, and
action of visiting a page is taken to the same as actually looking up a paper.
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Computational Exercises

2.1. Let Xn be the number of white balls in urn A after n experiments. {Xn, n ≥
0} is a DTMC on {0, 1, ..., 10} with the following transition probability matrix:

P =



0 1.00 0 0 0 0 0 0 0 0 0
0.01 0.18 0.81 0 0 0 0 0 0 0 0

0 0.04 0.32 0.64 0 0 0 0 0 0 0
0 0 0.09 0.42 0.49 0 0 0 0 0 0
0 0 0 0.16 0.48 0.36 0 0 0 0 0
0 0 0 0 0.25 0.50 0.25 0 0 0 0
0 0 0 0 0 0.36 0.48 0.16 0 0 0
0 0 0 0 0 0 0.49 0.42 0.09 0 0
0 0 0 0 0 0 0 0.64 0.32 0.04 0
0 0 0 0 0 0 0 0 0.81 0.18 0.01
0 0 0 0 0 0 0 0 0 1.00 0


.

Using the equation given in Example 2.21 we get the following table:

n X0 = 8 X0 = 5 X0 = 3
0 8.0000 5.0000 3.0000
1 7.4000 5.0000 3.4000
2 6.9200 5.0000 3.7200
3 6.5360 5.0000 3.9760
4 6.2288 5.0000 4.1808
5 5.9830 5.0000 4.3446
6 5.7864 5.0000 4.4757
7 5.6291 5.0000 4.5806
8 5.5033 5.0000 4.6645
9 5.4027 5.0000 4.7316
10 5.3221 5.0000 4.7853
11 5.2577 5.0000 4.8282
12 5.2062 5.0000 4.8626
13 5.1649 5.0000 4.8900
14 5.1319 5.0000 4.9120
15 5.1056 5.0000 4.9296
16 5.0844 5.0000 4.9437
17 5.0676 5.0000 4.9550
18 5.0540 5.0000 4.9640
19 5.0432 5.0000 4.9712
20 5.0346 5.0000 4.9769

2.2. Let P be the transition probability matrix and a the initial distribution given
in the problem.
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1. Let a(2) be the pmf of X2. It is given by Equation 2.31. Substituting for a and P
we get

a(2) = [0.2050 0.0800 0.1300 0.3250 0.2600].

2.

P(X2 = 2, X4 = 5) = P(X4 = 5|X2 = 2)P(X2 = 2)

= P(X2 = 5|X0 = 2) ∗ (.0800)

= [P 2]2,5 ∗ (.0800)

= (.0400) ∗ (.0800) = .0032.

3.

P(X7 = 3|X3 = 4) = P(X4 = 3|X0 = 4)

= [P 4]4,3

= .0318.

4.

P(X1 ∈ {1, 2, 3}, X2 ∈ {4, 5}) =

5∑
i=1

P(X1 ∈ {1, 2, 3}, X2 ∈ {4, 5}|X0 = i)P(X0 = i)

=

5∑
i=1

ai

3∑
j=1

5∑
k=4

P(X1 = j,X2 = k}|X0 = i)

=

5∑
i=1

3∑
j=1

5∑
k=4

aipi,jpj,k

= .4450.

2.3. Easiest way is to prove this by induction. Assume a+b 6= 2. Using the formula
given in Computational Exercise 3, we see that

P 0 =
1

2− a− b

[
1− b 1− a
1− b 1− a

]
+

1

2− a− b

[
1− a a− 1
b− 1 1− b

]
=

[
1 0
0 1

]
,

and

P 1 =
1

2− a− b

[
1− b 1− a
1− b 1− a

]
+
a+ b− 1

2− a− b

[
1− a a− 1
b− 1 1− b

]
=

[
a 1− a

1− b b

]
.

Thus the formula is valid for n = 0 and n = 1. Now suppose it is valid for n = k ≥
1. Then

P k+1 = P k ∗ P

=

[
1

2− a− b

[
1− b 1− a
1− b 1− a

]
+

(a+ b− 1)k

2− a− b

[
1− a a− 1
b− 1 1− b

]]
∗
[

a 1− a
1− b b

]
=

1

2− a− b

[
1− b 1− a
1− b 1− a

]
+

(a+ b− 1)k+1

2− a− b

[
1− a a− 1
b− 1 1− b

]
,

where the last equation follows after some algebra. Hence the formula is valid for
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n = k + 1. Thus the result is established by induction.

If a+ b = 2, we must have a = b = 1. Hence,

P = Pn =

[
1 0
0 1

]
.

The formula reduces to this after an application of L’Hopital’s rule to compute the
limit.

2.4. Let Xn be as defined in Example 2.1b. Then {Xn, n ≥ 0} is a DTMC with
transition matrix given below:

P =

[
p1 1− p1

1− p2 p2

]
.

Using the results of Computational exercise 3 above, we get

Pn =
1

2− p1 − p2

[
1− p2 1− p1

1− p2 1− p1

]
+

(p1 + p2 − 1)n

2− p1 − p2

[
1− p1 p1 − 1
p2 − 1 1− p2

]
.

Using the fact that the first patient is given a drug at random, we have

P(X1 = 1) = P(X1 = 2) = .5.

Hence, for n ≥ 1, we have

P(Xn = 1) = P(Xn = 1|X1 = 1) ∗ .5 + P(Xn = 1|X1 = 2) ∗ .5

=
1

2
· ([Pn−1]1,1 + [Pn−1]2,1)

= 1− (p1 − p2) ∗ ((p1 + p2 − 1)(n−1) − 1)

2− a− b
.

Now, let Yr = 1 if the rth patient gets drug 1, and 0 otherwise. Then

Zn =

n∑
r=1

Yr

is the number of patients among the first n who receive drug 1. Hence

E(Zn) = E(

n∑
r=1

Yr)

=

n∑
r=1

E(Yr)

=

n∑
r=1

P(Yr = 1)

=

n∑
r=1

P(Xr = 1)
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=

n∑
r=1

[
1 +

(p2 − p1) ∗ ((p1 + p2 − 1)(n−1) − 1)

2− a− b

]
= n

2(1− p2)

2− p1 − p2
− (p1 − p2)

(2− p1 − p2)2
· ((p1 + p2 − 1)n − 1).

2.5. Let Xn be the brand chosen by a typical customer in the nth week. Then
{Xn, n ≥ 0} is a DTMC with transition probability matrix P given in Example 2.6.
We are given the initial distribution a to be

a = [.3 .3 .4].

The distribution of X3 is given by

a(3) = aP 3 = [0.1317 0.3187 0.5496].

Thus a typical customer buys brand B in week 3 with probability .3187. Since all
k customers behave independently of each other, the number of customers that buy
brand B in week 3 is B(k, .3187) random variable.

2.6. Since the machines are identical and independent, the total expected revenue
over {0, 1, · · · , n} is given by rM (n)

11 , where M (n) is given in Example 2.24.

2.7. Let α = 1+u
1−d and write

Xn = (1− d)nαZn .

Using the results about the generating functions of a binomial, we get

E(Xn) = (1− d)nE(αZn) = (1− d)n(pα+ 1− p)n,

and
E(X2

n) = (1− d)2nE(α2Zn) = (1− d)2n(pα2 + 1− p)n.
This gives the mean and variance of Xn.

2.8. The initial distribution is

a = [1 0 0 0].

(i) a(2) = aP 2 = [0.42 0.14 0.11 0.33]. Hence,

P(X2 = 4) = .33.

(ii) Since P(X0 = 1) = 1, we have

P(X1 = 2, X2 = 4, X3 = 1) =

4∑
i=1

P(X1 = 2, X2 = 4, X3 = 1|X0 = i)P(X0 = i)

= p(X1 = 2, X2 = 4, X3 = 1|X0 = 1)

= p1,2p2,4p4,1

= .015.
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(iii) Using time homogeneity, we get

P(X7 = 4|X5 = 2) = P(X2 = 4|X0 = 2)

= [P 2]2,1 = .25

(iv) Let b = [1234]′. Then

E(X3) = a ∗ P 3 ∗ b = 2.455.

2.9. From the definition of Xn and Yn we see that

Xn+1 =

{
20 if Xn − Yn < 10,
Xn − Yn if Xn − Yn ≥ 10.

Since {Yn, n ≥ 0} are iid random variables, it follows that {Xn, n ≥ 0} is a DTMC
on state space {10, 11, 12, ..., 20}. The transition probability matrix is given by

P =



.1 0 0 0 0 0 0 0 0 0 .9

.2 .1 0 0 0 0 0 0 0 0 .7

.3 .2 .1 0 0 0 0 0 0 0 .4

.4 .3 .2 .1 0 0 0 0 0 0 0
0 .4 .3 .2 .1 0 0 0 0 0 0
0 0 .4 .3 .2 .1 0 0 0 0 0
0 0 0 .4 .3 .2 .1 0 0 0 0
0 0 0 0 .4 .3 .2 .1 0 0 0
0 0 0 0 0 .4 .3 .2 .1 0 0
0 0 0 0 0 0 .4 .3 .2 .1 0
0 0 0 0 0 0 0 .4 .3 .2 .1


.

The initial distribution is

a = [0 0 0 0 0 0 0 0 0 0 1].

Let

b = [10 11 12 13 14 15 16 17 18 19 20]′.

Then we have

E(Xn) = aPnb, n ≥ 0.
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Using this we get
n E(Xn)
0 20.0000
1 18.0000
2 16.0000
3 14.0000
4 13.1520
5 14.9942
6 16.5868
7 16.5694
8 15.4925
9 14.5312
10 14.5887

2.10. From Example 2.12, {Xn, n ≥ 0} is a random walk on {0, 1, 2, 3, ...} with
parameters

r0 = 1− p = .2, p0 = .8,

qi = q(1− p) = .14, pi = p(1− q) = .24, ri = .62, i ≥ 1.

We are given X0 = 0. Hence,

P(X1 = 0) = .2, P(X1 = 1) = .8.

And,

P(X2 = 0) = P(X2 = 0|X1 = 0)P(X1 = 0) + P(X2 = 0|X1 = 1)P(X1 = 1)

= .2 ∗ .2 + .14 ∗ .8
= .152.

2.11. The simple random walk of Example 2.19 has state space {0,±1,±2, ...},
and the following transition probabilities:

pi,i+1 = p, pi,i−1 = q = 1− p.

We want to compute
pni,j = P(Xn = j|X0 = i).

Let R be the number of right steps taken by the random walk during the first n steps,
and L be the number of right steps taken by the random walk during the first n steps.
Then,

R+ L = n, R− L = j − i.
Thus

R =
1

2
(n+ j − i), L =

1

2
(n+ i− j).

This is possible if and only if n+ j− i is even. There are
(
n
R

)
ways of taking R steps
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to the right and L steps to the left in the first n steps. Hence, if n+ j − i is even, we
have

pni,j =

(
n

R

)
pRqL,

otherwise it is zero.

2.12. Let {Xn, n ≥ 0} be the DTMC of Modeling Exercise 2.5. Let Yn =
(Xn−1, Xn). {Yn, n ≥ 1} is a DTMC with transition probability matrix given below:

P =


0.8 0.2 0 0
0 0 .5 .5
.75 .25 0 0
0 0 0.4 0.6

 .
Suppose the rainy spell starts on day 1, i.e Y1 = (1, 2). Let R be the length of the
rainy spell.Then

P(R = 1) = P(Y2 = (2, 1)|Y1 = (1, 2)) = .5.

For k ≥ 2 we have

P(R = k) = P(Yi = (2, 2), i = 2, 3, ..., k, Yk+1 = (2, 1)|Y1 = (1, 2))

= P(Y2 = (2, 2)|Y1 = (1, 2))

k−1∏
i=2

P(Yi+1 = (2, 2)|Yi = (2, 2))P(Yk+1 = (2, 1)|Yk = (2, 2))

= (.5)(.6)k−2(.4).

By a similar analysis, the distribution of the length of the sunny spell S, is given by

P(S = 1) = .25,

and, for k ≥ 2,
P(S = k) = (.75)(.8)k−2(.2).

2.13. The matlab program to compute the quantities is given below.
**************************************************************
C = 20; % Capacity of the bus.
l = 10; % Passengers ata stop are P(l).
p = 0.4; % prob that a rider gets off at a stop.
N = 20; % Number of stops.
%pp(i+1) = p(a Poisson(l) rv = i).
pp= zeros(1,C+1);pp(1)=exp(-l);
for i = 1:C pp(i+1) = pp(i)*l/(i);
end;
% P = transition probability matrix of the DTMC {Xn, n ≥ 0}.
P = zeros(C+1);
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for i = 0:C
%pb(j+1) = P(a Bin(i,p) rv = j).
pb=zeros(1,i+1);
pb(1) = p(̂i);
for j=1:i
pb(j+1) = pb(j)*((1-p)/p)*(i-j+1)/(j);
end;
for j=0:C-1
P(i+1,j+1) = 0;
for k=0:min(i,j)
P(i+1,j+1) = P(i+1,j+1) + pb(k+1)*pp(j-k+1);
end;
end;
end;
b = sum(P’);
P(:,C+1) = ones(C+1,1) - b’;
% ex(n) = E(Xn).
nv=[];ex = [];b=[0:C]’;a=[1 zeros(1,C)];
for n=0:N
nv = [nv n];
ex = [ex a*Pn̂*b];
end;
[nv′ ex′]
*************************************************************
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The final output is
n E(Xn)
0 0
1 9.9972
2 15.6322
3 17.9843
4 18.7442
5 18.9664
6 19.0294
7 19.0471
8 19.0520
9 19.0534
10 19.0538
11 19.0539
12 19.0539
13 19.0539
14 19.0539
15 19.0539
16 19.0539
17 19.0539
18 19.0539
19 19.0539
20 19.0539

2.14. Follows from direct verification that

Pxk = λkxk, ykP = λkyk, 1 ≤ k ≤ m.

2.15. The statement holds for n = 1. Now suppose it holds for a given n ≥ 1.
Then

pn+1
00 =

∞∑
i=0

P(Xn = i)pi0 = q

∞∑
i=0

P(Xn = i) = q.

The result is true by induction.

2.16. The matlab program is listed below:
********************************************
N = 3; %Number of points on the circle.
p = .4; %probability of clockwise jump.
%P = the transition probability matrix.
P = zeros(N,N);
P(1,N) = 1-p;P(1,2) = p;
for i = 2:N-1
P(i,i+1) = p;
P(i,i-1) = 1-p;
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end;
P(N,1) = p; P(N,N-1) = 1-p;
[V,D] = eig(P);
IV = inv(V);
for i=1:N
i
%i th eigenvalue is printed next.
D(i,i)
% the matrix Bi is printed next.
V(:,i)*IV(i,:)
end;
*******************************************
The output of the above program is

λ1 = 1, λ2 = −.5 + .1732i, λ3 = −.5− .1732i.

The corresponding matrices are

B1 =

 0.3333 0.3333 0.3333
0.3333 0.3333 0.3333
0.3333 0.3333 0.3333

 ,

B2 =

 0.3333 −0.1667 + 0.2887i −0.1667− 0.2887i
−0.1667− 0.2887i 0.3333 −0.1667 + 0.2887i
−0.1667 + 0.2887i −0.1667− 0.2887i 0.3333

 ,

B3 =

 0.3333 −0.1667− 0.2887i −0.1667 + 0.2887i
−0.1667 + 0.2887i 0.3333 −0.1667− 0.2887i
−0.1667− 0.2887i −0.1667 + 0.2887i 0.3333

 .
Then

Pn = B1 + (−.5 + .1732i)nB2 + (−.5− .1732i)nB3.

2.18. We show by induction that

p
(n)
ij = qpj , j = 0, 1, 2, ..., n− 1,

pi,i+n = pn.

All other p(n)
i,j are zero. This is clearly true at n=1. We show that if it holds for n, it

holds for n+ 1. For j = 0, 1, ..., n− 1

p
(n+1)
i,j = qp

(n)
0,j + pp

(n)
i+1,j

= qqpj + pqpj = qpj .
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For j = n, we hace

p
(n+1)
i,n = qp

(n)
0,n + pp

(n)
i+1,n

= qpn + 0 = qpn.

Finally,

p
(n+1)
i,i+n+1 = qp

(n)
0,n+1 + pp

(n)
i+1,i+1+n

= 0 + ppn = pn+1.

Thus the result holds for n+ 1. Hence it holds for all n by induction.

2.19. We are given

P =

 0.3 0.4 0.3
0.4 0.5 0.1
0.6 0.2 0.2

 .
Hence

I − zP =

 1− 0.3z −0.4z −0.3z
−0.4z 1− 0.5z −0.1z
−0.6z −0.2z 1− 0.2z

 .
Following Example 2.15, we get

∞∑
n=0

p
(n)
11 z

n = (I − zP )−1
11

=
det(A)

det(I − zP )

where

A =

[
1− 0.5z −0.1z
−0.2z 1− 0.2z

]
.

Expanding, we get
∞∑
n=0

p
(n)
11 z

n =
1− 0.7z + .08z2

(1− z − .05z2 + .05z3

=
.4

1− z
+

0.5236

1 + 0.2236z
− 0.0764

1− .2236z

=

∞∑
n=0

(.4 + 0.5236(−0.2236)n + 0.0764(0.2236)n)zn

Hence, we get

p
(n)
11 = .4 + 0.5236(−0.2236)n + 0.0764(0.2236)n, n ≥ 0.

2.20. From the structure of the DTMC

p
(n)
ij = 0 if j > i.
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Also,

p
(n)
ii =

(
1

i+ 1

)n
, i ≥ 0.

Hence,

φii(z) =

∞∑
n=0

p
(n)
ii z

n

=

∞∑
n=0

(
z

i+ 1

)n
= 1/(1− z/(i+ 1)).

Next,

φi,i−1(z) =

∞∑
n=0

p
(n)
i,i−1z

n

=
∞∑
n=0

{ 1

i+ 1
p

(n−1)
i,i−1 +

1

i+ 1
p

(n−1)
i−1,i−1}z

n

=
z

i+ 1
φi,i−1(z) +

z

i+ 1
φi−1,i−1(z).

Solving the above we get

φi,i−1(z) =
z

i+ 1

{
(1− z

i+ 1
)(1− z

i
)

}−1

.

In general we have

φi,j =
z

i+ 1
(

i∑
k=j

φk,j(z)).

The result follows from this by induction.

2.21. The {Xn, n ≥ 0} as defined in Modeling Exercise 2.28 is a 3-state DTMC
with transition probability matrix given by

P =

 0 1 0
0 .5 .5
0 0 1

 .
Using Matlab, we get

P = XDX−1,

where

X =

 1.0000 0.8944 1
0 0.4472 1
0 0 1

 ,
D =

 0 0 0
0 0.5 0
0 0 1

 ,
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and

X−1 =

 1 −2 1
0 1 −1
0 0 1

 .
Hence, n ≥ 1,

Pn = XDnX−1 =

 0 21−n 1− 21−n

0 2−n 1− 2−n

0 0 1

 .
2.22. The {Xn, n ≥ 0} as defined in Modeling Exercise 2.27 is a 3-state DTMC

with transition probability matrix given by

P =

 0.5 0.5 0
0.25 .5 .25

0 0.5 0.5

 .
Using Matlab, we get

P = XDX−1,

where

X =

 1 1 −1
−1 1 0
1 1 1

 ,
D =

 0 0 0
0 1 0
0 0 0.5

 ,
and

X−1 =

 0.25 −0.50 0.25
0.25 0.50 0.25
0.00 0 0.50

 .
Hence, n ≥ 1,

Pn = XDnX−1 =

 .25 + 2−n−1 .50 .25− 2−1−n

0.25 0.50 0.25
.25− 2−1−n 0.50 .25 + 2−n−1

 .
2.23. Let {Xn, n ≥ 0} be a branching process with X0 = i. Suppose the in-

dividuals in the zeroth generation are indexed 1, 2, ..., i. Let Xk
n be the number of

individuals in the nth generation that are direct descendants of the kth individual in
generation zero. Then,

Xk
0 = 1, 1 ≤ k ≤ i,

and

Xn =

i∑
k=1

Xk
n, n ≥ i.

Since the offsprings do not interact with each other, it is clear that {Xk
n, n ≥ 0},
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1 ≤ k ≤ i are i independent and stochastically identical branching processes, each
beginning with a single individual. Hence,

E(Xn) = E(

i∑
k=1

Xk
n)

=

i∑
k=1

E(Xk
n)

= iµn,

from Equation 2.37. Similarly

V ar(Xn) = V ar(

i∑
k=1

Xk
n)

=

i∑
k=1

V ar(Xk
n)

=

{
inσ2 if µ = 1,

iµn−1σ2 µn−1
µ−1 if µ 6= 1.

2.24. The transition probability matrix is

P =


1 0 0 0
q 0 p 0
0 q 0 p
0 0 0 1

 .
Finding the eigenvalues and eigenvectors, we get, with θ =

√
pq,

D =


θ 0 0 0
0 −θ 0 0
0 1 0
0 0 0 1

 ,
and

X =


0 0 1− pq −p2

θ −θ q 0
q q q2 pq
0 0 0 q

 .
Then we get

Pn = XDnX−1.

2.25. The Wright-Fisher model satisfies

Xn+1 ∼ Bin(N,Xn/N).

Hence
E(Xn+1) = NE(Xn/N) = E(Xn).
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Hence E(Xn) = E(X0) = i for all n ≥ 0. We next have

E(X2
n+1|Xn) = N

Xn

N
(1− Xn

N
).

Taking expectations again, we get

E(X2
n+1) = E(Xn) + E(X2

n)(1− 1

N
).

Using E(Xn) = i, a = 1− 1
N and solving recursively, we get

E(X2
n) = Ni(1− an) + i2an, n ≥ 0.

Hence
Var(Xn) = E(X2

n)− (E(Xn))2 = (1− an)(Ni− i2).

2.26. We have Xn+1 = Xn + 1 with probability p(Xn) = Xn(N − Xn)/N2,
Xn+1 = Xn − 1 with probability p(Xn), and Xn+1 = Xn with the remaining
probability. Hence

E(Xn+1) = E(Xn) = E(X0) = i.

Also,

E(X2
n+1) = E((X2

n+2Xn+1)p(Xn)+X2
n(1−2p(Xn))+(X2

n−2Xn+1)p(Xn)).

Using E(Xn) = i and simplifying the above, we get

E(X2
n+1) = E(X2

n)(1− 2

N2
) +

2i

N
.

Using E(X2
0 ) = i2, the above equation can be solved recursively to get

E(X2
n) = ani2 + b

1− an

1− a
, n ≥ 0,

where a = 1− 2/N2, and b = 1i/N .
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Conceptual Exercises
2.1. We have

P(Xn+2 = k,Xn+1 = j|Xn = i,Xn−1, · · · , X0)

= P(Xn+2 = k|Xn+1 = j,Xn = i,Xn−1, · · · , X0) · P(Xn+1 = j|Xn = i,Xn−1, · · · , X0)

= P(Xn+2 = k|Xn+1 = j)P(Xn+1 = j|Xn = i)

= pjkpij = P(X2 = k,X1 = j|X0 = i)

The result follows by summing over j ∈ A and k ∈ B.

2.2. (a). Let {Xn, n ≥ 0} and {Yn, n ≥ 0} be two independent DTMCs on state
space {0, 1} with transition probability matrices P1 and P2, where

P1 =

[
0.8 0.2
.5 .5

]
,

P2 =

[
0.3 0.7
.4 .6

]
.

Both DTMCs start with initial distribution [.5.5]. Let Zn = Xn + Yn. Now

P(Z2 = 2|Z1 = 1, Z0 = 0) =
P(Z2 = 2, Z1 = 1, Z0 = 0)

P(Z1 = 1, Z0 = 0)
.

We have

P(Z2 = 2, Z1 = 1, Z0 = 0)

= P(X2 = Y2 = 1, X1 + Y1 = 1, X0 = Y0 = 0)

= P(X2 = Y2 = 1, X1 = 1, Y1 = 0, X0 = Y0 = 0) + P(X2 = Y2 = 1, X1 = 0, Y1 = 1, X0 = Y0 = 0)

= P(X2 = 1, X1 = 1, X0 = 0)P(Y2 = 1, Y1 = 0, Y0 = 0)

+P(X2 = 1, X1 = 0, X0 = 0)p(Y2 = 1, Y1 = 1, Y0 = 0)

= (.5)(.1)(.5)(.21) + (.5)(.16)(.5)(.42) = .0221.

Similarly
P(Z1 = 1, Z0 = 0) = .1550.

Hence
P(Z2 = 2|Z1 = 1, Z0 = 0) = .0221/.155 = .1423.

However,
P(Z2 = 2, Z1 = 1) = .0690,

P(Z1 = 1) = .5450.

Hence
p(Z2 = 2|Z1 = 1) = .0690/.5450 = .1266.

Thus {Zn, n ≥ 0} is not a DTMC.

(b). Let {Xn, n ≥ 0} and {Yn, n ≥ 0} be two independent DTMCs with state
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space S1 and S2 and transition probability matrices P 1 and P 2, respectively. Let
Zn = (Xn, Yn). The state space of {Zn, n ≥ 0} is S1 × S2. Furthermore,

P(Zn+1 = (j, l)|Zn = (i, k), Zn−1, ..., Z0)

= P(Xn+1 = j, Yn+1 = l|Xn = i, Yn = k,Xn−1, Yn−1, ..., X0, Y0)

= P(Xn+1 = j|Xn = i,Xn−1, ..., X0) · P(Yn+1 = l|Yn = k, Yn−1, ..., Y0)

= P(Xn+1 = j|Xn = i) · P(Yn+1 = l|Yn = k)

= P 1
i,j · P 2

k,l

= P(Zn+1 = (j, l)|Zn = (i, k)).

Thus {Zn, n ≥ 0} is a DTMC.

2.3. (a). False. Let {Xn, n ≥ 0} be a DTMC with state space {1, 2, 3} and
transition probability matrix

P =

 0.8 0.2 0
0 .5 .5
.75 .25 0

 .
Let the initial distribution be a = [.20.8]. Now

P(X2 = 1|X1 ∈ {1, 2}, X0 = 1) =
P(X2 = 1, X1 ∈ {1, 2}, X0 = 1)

P(X1 ∈ {1, 2}, X0 = 1)

=
.1280

.2
= .64.

However,

P(X2 = 1|X1 ∈ {1, 2}) =
P(X2 = 1, X1 ∈ {1, 2})

P(X1 ∈ {1, 2})

=
.4800

1
= .4800.

(b). True. We have

P(Xn = j0|Xn+1 = j1, Xn+2 = j2, ..., Xn+k = jk)

=
P(Xn = j0, Xn+1 = j1, Xn+2 = j2, ..., Xn+k = jk)

P(Xn+1 = j1, Xn+2 = j2, ..., Xn+k = jk)

=
P(Xn+2 = j2, ..., Xn+k = jk|Xn = j0, Xn+1 = j1)P(Xn = j0, Xn+1 = j1)

P(Xn+1 = j1, Xn+2 = j2, ..., Xn+k = jk)

=
P(Xn+2 = j2, ..., Xn+k = jk|Xn+1 = j1)P(Xn = j0, Xn+1 = j1)

P(Xn+1 = j1, Xn+2 = j2, ..., Xn+k = jk)

=
P(Xn+1 = j1, Xn+2 = j2, ..., Xn+k = jk)P(Xn = j0, Xn+1 = j1)/P(Xn+1 = j1)

P(Xn+1 = j1, Xn+2 = j2, ..., Xn+k = jk)

= P(Xn = j0, Xn+1 = j1)/P(Xn+1 = j1)
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= P(Xn = j0|Xn+1 = j1).

(c). False. Time shifting is allowed only in conditional probabilities, not in joint
probabilities. Consider the special case of k = 0. Then the equation reduces to

P(Xn = j0) = P(X0 = j0).

This is clearly not valid in general. For the DTMC in part (a), for example, P(X0 =
1) = .2, but P(X1 = 1) = .76

2.4 (a). False. (True only if k = 0). b and the transition probability matrix will
completely describe {Xn, n ≥ k}. It does not determine distribution of Xk−1 for
example.

(b). False. (True only if f is one-to-one function, in which case f(Xn) is a rela-
beled version of Xn.) As a counterexample, consider the DTMC in part (a). Let

f(1) = f(2) = 1, f(3) = 2.

Then Yn = 1 if Xn ∈ {1, 2}, and Yn = 2 if Xn = 3. The numerical calculations in
part (a) show that {Yn, n ≥ 0} is not a DTMC.

2.5. {(Xn, Yn, Zn), n ≥ 0} is a DTMC. Let

f(i, k, 0) = i, f(i, k, 1) = k.

Then
Wn = f(Xn, Yn, Zn).

Thus {Wn, n ≥ 0}will be a DTMC if and only if distribution of (Xn+1, Yn+1, Zn+1)
given (Xn = i, Yn = k, Zn = 1) depends only on i, and that of (Xn+1, Yn+1, Zn+1)
given (Xn = i, Yn = k, Zn = 2) depends only on k. This won’t be the case in gen-
eral. Hence {Wn, n ≥ 0} is not a DTMC.

2.6. Let
αk = P(Yn = k), k ∈ {0, 1, 2, ...}.

Xn be the value of the nth record. We have

P(Xn+1 = j|Xn = i,Xn−1, ..., X0) =
αj

1− fi
, j > i,

where
fi = P(Yn ≤ i).

Hence {Xn, n ≥ 0} is a DTMC.

2.7. Let
Ni = min{n ≥ 0 : Xn 6= i}.
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Then, for r ≥ 1,

P(Ni = r|X0 = i) = P(X1 = i, ...,Xr−1 = i,Xr 6= i|X0 = i)

= (pi,i)
r−1(1− pi,i).

Thus the sojourn time in state i is G(1− pi,i).

2.8. By its definition, the rth visit of the DTMC {Xn, n ≥ 0} to the set A takes
place at time Nr. (The zeroth visit is at time 0.) The actual state visited at this rth
visit is Yr. Thus the state space of {Yr, r ≥ 0} is A. Then

P(Yr+1 = j|Yr = i, Yr−1, ..., Y0) = P(XNr+1
= j|XNr = i,XNr−1 , ..., XN0

)

= P(XNr+1
= j|XNr = i).

Hence {Yr, r ≥ 0} is a DTMC.

2.9. Let ai = P(X0 = i). Then

P(X1 = j) =
∑
i∈S

P(X1 = j|X0 = i)ai = p
∑
i∈S

ai = p.

Suppose P(Xk = j) = p for some k ≥ 1.

P(Xk+1 = j) =
∑
i∈S

P(Xk+1 = j|Xk = i)P(Xk = i) = p
∑
i∈S

P(Xk = i) = p.

Thus the result follows by induction.

2.10. Define

Yn =

{
(Xn, 1) if n is odd
(Xn, 0) if n is even.

Then

P(Yn+1 = (j, 1)|Yn = (i, 0), Yn−1, ..., Y0) = P(Xn+1 = j|Xn = i, n even) = ai,j ,

and

P(Yn+1 = (j, 0)|Yn = (i, 1), Yn−1, ..., Y0) = P(Xn+1 = j|Xn = i, n odd) = bi,j .

Thus {Yn, n ≥ 0} is a DTMC with state space S × {0, 1} and transition probability
matrix

P =

[
0 A
B 0

]
.

2.11. The solution of this problem is from Ross (Stochastic Processes, Wiley,
1983), Chapter 4, Section 1. Suppose X0 = 0. We shall first show that

P(Xn = i||Xn| = i, |Xn−1|, ..., |X0|) =
pi

pi + qi
.

To prove this let
T = max{k : 0 ≤ k ≤ n,Xk = 0}.



36 DISCRETE-TIME MARKOV CHAINS: TRANSIENT BEHAVIOR

Then, since XT = 0, we have

P(Xn = i||Xn| = i, |Xn−1|, ..., |X0|) = P(Xn = i||Xn| = i, |Xn−1|, ..., |XT+1|, XT = 0).

From the definition of T , it follows that the event E = {|Xn| = i, |Xn−1| =
in−1, ..., |XT+1| = iT+1, XT = 0} is teh union of two disjoint events E+ = {Xn =
i,Xn−1 = in−1, ..., XT+1 = iT+1, XT = 0}, and E− = {Xn = −i,Xn−1 =
−in−1, ..., XT+1 = −iT+1, XT = 0}. We have

P(E+) = p(n−T+i)/2q(n−T−i)/2,

P(E−) = p(n−T−i)/2q(n−T+i)/2.

Hence

P(Xn = i|E) =
P(E+)

P(E+) + P(E−)
=

pi

pi + qi
.

Thus

P(|Xn+1| = i+ 1 | |Xn| = i, |Xn−1|, ..., |X0|)

= P(Xn+1 = i+ 1|Xn = i)
pi

pi + qi

+ P(Xn+1 = −(i+ 1)|Xn = −i) qi

pi + qi

=
pi+1 + qi+1

pi + qi
.

Thus {|Xn|, n ≥ 0} is a random walk on {0, 1, 2, ...} with

p0,1 = 1,

and, for i ≥ 1,

pi,i+1 =
pi+1 + qi+1

pi + qi
= 1− pi,i−1.

2.12. A given partition {Ar} of S is called lumpable if, for all Ar and As in the
partition, ∑

j∈As

pi,j = αr,s, for all i ∈ Ar.

Now define
Ai = {j ∈ S : f(j) = i}.

{Yn = f(Xn), n ≥ 0} is a DTMC if the partition {Ar} is lumpable. To prove
sufficiency, suppose {Ar} is lumpable. Then

P(Yn+1 = s|Yn = r, Yn−1, ..., Y0) = P(Xn+1 ∈ As|Xn ∈ Ar, Yn−1, ..., Y0)

= αr,s.

Necessity follows in a similar fashion.


