
Chapter 3

Test Bank

3.0 Chapter 0

1. Convert the binary number 10110 to base ten.

Answer. 22

2. Write the base ten number 37 in binary.

Answer. 100101

3. Write the base ten number 19 in binary.

Answer. 10011

4. Convert the base 8 number 75 to base ten.

Answer. 61

5. Write the base ten number 75 in base 8.

Answer. 113

6. Convert the base 16 number a7 to base ten.

Answer. 167

7. Write the base ten number 436 in base 16.

Answer. 1b4

8. How is 8n expressed in binary?

Answer. A 1 followed by 3n 0’s.

183
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3.1 Chapter 1

Section 1.1

1. Is the sentence “There are no true sentences.” a statement? Explain.

Answer. Yes. It is false.

2. Make a truth table for p→ q ∨ r.

Answer.
p q r q ∨ r p→ q ∨ r
F F F F T
F F T T T
F T F T T
F T T T T
T F F F F
T F T T T
T T F T T
T T T T T

3. Is the statement form p→ ¬p a contradiction? Explain.

Answer. No. It is true when p is false.

4. Determine if ¬(p→ q) and ¬p→ ¬q are logically equivalent? Justify your
answer.

Answer. They are not logically equivalent. They differ when p
is true and q is true.

5. Write and simplify the contrapositive of p→ ¬q ∧ r.

Answer. q ∨ ¬r → ¬p

6. Given the statement

If Tara is not studying, then Tara is sleeping.

Write its

(a) converse.

(b) contrapositive.

(c) inverse.

(d) negation.
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Answer.
(a) If Tara is sleeping, then Tara is not studying.
(b) If Tara is not sleeping, then Tara is studying.
(c) If Tara is studying, then Tara is not sleeping.
(d) Tara is not studying, and Tara is not sleeping.

7. Verify that ¬p ∧ (¬q ∨ p) ≡ ¬(p ∨ q) not by making a truth table but by
using known basic logical equivalences.

Answer.

¬p ∧ (¬q ∨ p) ≡ (¬p ∧ ¬q) ∨ (¬p ∧ p) Distributivity
≡ (¬p ∧ ¬q) ∨ f Contradiction Rule
≡ ¬p ∧ ¬q Contradiction Rule
≡ ¬(p ∨ q) De Morgan’s Law

8. Trace the pictured circuit

P

Q
ORs c

NOT

AND S

(a) to determine an expression for the output in terms of the input,

(b) and make an input-output table.

(c) Explain how the same input-output table can be accomplished by a
circuit using fewer basic gates.

Answer.
(a) (P ∨Q) ∧ ¬Q = S.
(b) P Q S

0 0 0
0 1 0
1 0 1
1 1 0

(c) S ≡ P ∧ ¬Q.

Q c
NOT

P
AND S

9. Draw a circuit that realizes the expression ¬P ∨Q = S.

Answer.

P
c

NOT

Q
OR S



186 CHAPTER 3. TEST BANK

Section 1.2

1. Express in set notation the set of integers smaller than 5.

Answer. {n : n ∈ Z and n < 5}.

2. Express in interval notation the set of real numbers greater than or equal
to −3.

Answer. [−3,∞).

For Exercises 3 through 8, determine if each of the the following relations
is True or False.

3. {1, 3, 5, 3, 1, 7, 1} ⊆ {1, 3, 5, 7}.

Answer. True.

4. {7} ∈ N.

Answer. False.

5. 3 ⊂ {1, 2, 3, 4}.

Answer. False.

6. ∅ = 0.

Answer. False.

7. [−1, 1] is infinite.

Answer. True.

8. |{2, 3, 7, 8, 5, 3}| = 6.

Answer. False.

9. Write the expression for the “set” given in Russell’s Paradox.

Answer. {S : S is a set and S 6∈ S}.

Section 1.3

For Exercises 1 through 3, write the given statement as efficiently as possible
using quantifiers and standard notation. Determine if the statement is True or
False.

1. Every real number is smaller than twice itself.

Answer. ∀ x ∈ R, x < 2x.

2. There is an integer whose square is odd.
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Answer. ∃ n ∈ Z such that n2 is odd.

3. There is an integer n such that the nth power of every real number is
negative.

Answer. ∃ n ∈ Z such that ∀ x ∈ R, xn < 0.

For Exercises 4 through 6, write the negation of the given statement.
Determine which of the statement or its negation is True.

4. For every integer n, if n is positive then 2n− 1 is positive.

Answer. ∃ n ∈ Z such that n > 0 and 2n− 1 ≤ 0.
The original statement is True.

5. There is a real number whose cube is negative.

Answer. ∀ x ∈ R, x3 ≥ 0.
The original statement is True.

6. The product of any two real numbers is positive.

Answer. ∃ x, y ∈ R such that xy ≤ 0.
The negation is True.

7. Negate the statement

∃ n ∈ Z such that ∀ x ∈ R, xn < 0.

Answer. ∀ n ∈ Z,∃ x ∈ R such that xn ≥ 0.

8. Negate the statement

All good things come to an end.

Answer. There is a good thing that does not end.

For Exercises 9 and 10, let f and g be real functions. Use quantifiers to
precisely express the definition of the given notion.

9. f is periodic.

Answer. ∃ p ∈ R+ such that ∀ x ∈ R, f(x+ p) = f(x).

10. The composite function g ◦ f .

Answer. The function g ◦ f is defined by

∀ x ∈ R, (g ◦ f)(x) = g(f(x)).
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Section 1.4

For Exercises 1 and 2, find Ac, A ∩ B, A ∪ B, A \ B, and A M B for the given
sets.

1. A = {2, 3, 7}, B = {1, 2, 7, 9}, and U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

Answer. Ac = {1, 4, 5, 6, 8, 9, 10}, A ∩ B = {2, 7}, A ∪ B =
{1, 2, 3, 7, 9}, A \B = {3}, and A M B = {1, 3, 9}.

2. A = (0, 3], B = (2, 4), and U = R.

Answer. Ac = (−∞, 0] ∪ (3,∞), A ∩ B = (2, 3], A ∪ B = (0, 4),
A \B = (0, 2], and A M B = (0, 2] ∪ (3, 4).

3. Are (0, 3) and (2, 4) disjoint? Justify your answer.

Answer. No. 2.5 ∈ (0, 3) ∩ (2, 4) 6= ∅.

4. Find {0, 1} × {2, 4, 6}.

Answer. {(0, 2), (0, 4), (0, 6), (1, 2), (1, 4), (1, 6)}.

5. Sketch (1, 3]× [2, 5).

Answer.

2

5

1 3

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

6. Find P({0, 1, 2}).

Answer. {∅, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}.

7. Decide if the proposed identity A ∩ (B \ C) = (A ∩ B) \ (A ∩ C) is True
or False.

Answer. True.

8. Use definitions and basic set identities to verify the identity

Ac ∩ (Bc ∪A) = (A ∪B)
c
.

Answer.

Ac ∩ (Bc ∪A) = (Ac ∩Bc) ∪ (Ac ∩A) Distributivity
= (Ac ∩Bc) ∪ ∅ An ∅ Rule
= Ac ∩Bc An ∅ Rule
= (A ∪B)

c
De Morgan’s Law
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Section 1.5

1. Determine if the given argument form is valid. Justify your answer.

p→ q

r → p

q ∨ r
∴ q

Answer.

p q r p→ q r → p q ∨ r q
F F F T T F
F F T T F T
F T F T T T T
F T T T F T
T F F F T F
T F T F T T
T T F T T T T
T T T T T T T

Rows 3, 7, and 8 demonstrate the validity of the argument form.

2. Show that the given argument form is valid without using a truth table.

q → p

¬q → p

∴ p

Answer.

Statement Form Justification
1. q → p Given
2. ¬q → p Given
3. q ∨ ¬q a tautology
4. ∴ p (1),(2),(3), Two Separate Cases

3. Determine if the given argument is valid or invalid. Justify your answer.

If e > 0, then
1

e
> 0.

1

e
> 0.

∴ e > 0.

Answer. The argument’s form

p→ q

q

∴ p
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is not valid, as can be seen when p is false (and q is arbitrary).
So the argument is not valid.

4. Verify that the given argument form is valid.

∀ x ∈ U , p(x) ∧ q(x)

a ∈ U
∴ p(a)

Answer.

Statement Form Justification
1. ∀ x ∈ U , p(x) ∧ q(x) Given
2. a ∈ U Given
3. p(a) ∧ q(a) (1),(2), Principle of Specification
4. ∴ p(a) (3), In Particular

5. Verify that the given argument form is valid.

∀ x ∈ U , p(x)

∴ ∀ x ∈ U , p(x) ∨ q(x)

Answer.

Statement Form Justification
1. ∀ x ∈ U , p(x) Given
2. Let a ∈ U be arbitrary Assumption
3. p(a) (1),(2), Principle of Specification
4. p(a) ∨ q(a) (3), Obtaining Or
5. ∴ ∀ x ∈ U , p(x) ∨ q(x) (2), (4), Principle of Generalization

6. Show that the given argument form is invalid.

∀ x ∈ U , p(x)→ q(x)

∀ x ∈ U , q(x)

∴ ∀ x ∈ U , p(x)

Answer. Let U = R+, p(x) = “x > 1”, and q(x) = “x > 0”.
The resulting argument

∀ x ∈ R+, if x > 1 then x > 0

∀ x ∈ R+, x > 0

∴ ∀ x ∈ R+, x > 1

has all of its premises true but its conclusion false.
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3.2 Chapter 2

Section 2.1

1. Show: There exists x ∈ Z such that 2x2 − 5x+ 2 = 0.

Answer. Observe that 2(22)− 5(2) + 2 = 0.

2. Show: There exist m,n ∈ Z such that 5m+ 3n = 1.

Answer. Observe that 5(−1) + 3(2) = 1.

3. Disprove: For all sets A and B, |A ∪B| = |A|+ |B|.

Answer. Let A = B = {6}.
So |A ∪B| = |{6}| = 1 and |A|+ |B| = 1 + 1 = 2.
Hence, |A ∪B| 6= |A|+ |B| in this case.

4. Prove or Disprove: ∀ m ∈ Z, if m2 is odd, then m is even.

Answer. Counterexample: Observe that 12 is odd and 1 is not
even.

5. Show: ∀ n ∈ {3, 6, 9}, the sum of the (base ten) digits of 7n is n.

Answer. Observe that
7(3) = 21 and 2 + 1 = 3,
7(6) = 42 and 4 + 2 = 6, and
7(9) = 63 and 6 + 3 = 9.

6. Show: ∀ A ∈ P({4, 7}), |A| ≤ 2.

Answer. Note that |∅| = 0, |{4}| = |{7}| = 1, and |{4, 7}| = 2.

Section 2.2

1. Show: ∀ n ∈ Z−,−n− 1 ∈ N.

Answer. Let n ∈ Z−. So n ∈ Z and n ≤ −1. Thus, −n ≥ 1, and
hence −n−1 ≥ 0. Since −n−1 ∈ Z, it follows that −n−1 ∈ N.

2. Show: ∀ x ∈ R, if x < 0 then x3 < 0.

Answer. Suppose x ∈ R and x < 0. Since x2 > 0, it follows that
x(x2) < 0(x2). That is, x3 < 0.

3. Show: For all real functions f , if f is bounded above, then −2f is bounded
below.
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Answer. Suppose f is a real function that is bounded above. So
we have M ∈ R such that ∀ x ∈ R, f(x) ≤ M . Observe that
∀ x ∈ R, (−2f)(x) = −2 · f(x) ≥ −2 ·M = −2M . Hence, −2f
is bounded below.

4. Show: For all real functions f , if f is decreasing, then −f is increasing.

Answer. Suppose f is a real function that is decreasing. Suppose
x, y ∈ R with x < y. So f(x) > f(y). Multiplication by −1 gives
−f(x) < −f(y). So −f is increasing.

5. Prove or Disprove: For all real functions f , if f is increasing, then f is
not bounded above.

Answer. Counterexample: Let f(x) = x√
x2+1

.

x

y

1

−1
y = f(x)

This function is increasing and bounded above (by 1).

6. Show: For all sets A, B, and C, A ∩B ∩ C ⊆ A ∩ C.

Answer. Let A, B, and C be sets. Suppose that x ∈ A∩B ∩C.
So x ∈ A, x ∈ B, and x ∈ C. In particular, x ∈ A and x ∈ C.
Therefore, x ∈ A ∩ C.

7. Let A and B be sets in some universal set U . Show: B ∪A = A ∪B.

Answer. Observe that ∀ x ∈ U , x ∈ B ∪ A iff x ∈ B ∨ x ∈ A iff
x ∈ A ∨ x ∈ B iff x ∈ A ∪B.

Section 2.3

1. Show: ∀ x ∈ R, x ∈ [−3, 4) if and only if 2x+ 3 ∈ [−3, 11).

Answer. Let x ∈ R.
(→) Suppose x ∈ [−3, 4). That is, −3 ≤ x < 4. So −6 ≤ 2x < 8.
So −3 ≤ 2x+ 3 < 11. That is, 2x+ 3 ∈ [−3, 11).
(←) Suppose 2x+ 3 ∈ [−3, 11). That is, −3 ≤ 2x+ 3 < 11. So
−6 ≤ 2x < 8. So −3 ≤ x < 4. That is, x ∈ [−3, 4).
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2. Let n ∈ Z. Show: 2n2 − 5n− 3 = 0 if and only if n = 3.

Answer. (→) Suppose 2n2− 5n− 3 = 0. So (2n+ 1)(n− 3) = 0,
and hence n = − 1

2 or n = 3. Since n ∈ Z, it must be that n = 3.
(←) Suppose n = 3. Observe that 2 · 32 − 5 · 3− 3 = 0.

3. Let f be a real function.
Show: −f is periodic if and only if f is periodic.

Answer. (→) Suppose −f is periodic. Let p be its period.
Suppose x ∈ R. Since −f(x + p) = −f(x), multiplication
by −1 gives that f(x + p) = f(x). Therefore, f is periodic.
(←) Suppose f is periodic. Let p be its period. Suppose
x ∈ R. Since f(x + p) = f(x), multiplication by −1 gives that
−f(x+ p) = −f(x). Therefore, −f is periodic.

4. Let A, B, and C be sets in some universal set U .
Show: A ∩ (B \ C) = (A \ C) ∩B.

Answer. (⊆) Suppose x ∈ A∩ (B \C). So x ∈ A and x ∈ B \C.
Thus, x ∈ B and x 6∈ C. Since x ∈ A and x 6∈ C, we have
x ∈ A \ C. Since we also have x ∈ B, we have x ∈ (A \ C) ∩B.
(⊇) Suppose x ∈ (A \ C) ∩ B. So x ∈ A \ C and x ∈ B. Thus,
x ∈ A and x 6∈ C. Since x ∈ B and x 6∈ C, we have x ∈ B \ C.
Since we also have x ∈ A, we have x ∈ A ∩ (B \ C).

5. Show: (0, 2) ∩ [1, 3] = [1, 2).

Answer. (⊆) Suppose x ∈ (0, 2) ∩ [1, 3]. That is, 0 < x < 2 and
1 ≤ x ≤ 3. So 1 ≤ x < 2. That is, x ∈ [1, 2).
(⊇) Suppose x ∈ [1, 2). So 0 < 1 ≤ x < 2 ≤ 3. Hence, 0 < x < 2
and 1 ≤ x ≤ 3. That is, x ∈ (0, 2) ∩ [1, 3].

6. Show: [2,∞)× (3, 4] ⊆ (1, 2)
c × [3,∞).

Answer. Suppose (x, y) ∈ [2,∞) × (3, 4]. So x ∈ [2,∞) and
y ∈ (3, 4]. Since x ≥ 2, it follows that x 6∈ (1, 2). Since y > 3, it
follows that y ∈ [3,∞). Therefore, (x, y) ∈ (1, 2)

c × [3,∞).

7. Let A and B be sets. Show: P(A) ⊆ P(A ∪B).

Answer. Suppose S ∈ P(A). That is, S ⊆ A. Since A ⊆ A ∪B,
it follows from the transitivity of the subset relation that S ⊆
A ∪B. That is, S ∈ P(A ∪B).
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Section 2.4

1. Show: Z has no smallest element.

Answer. Suppose not. Let s be the smallest element of Z. How-
ever, s−1 is then a smaller element of Z. This is a contradiction.

2. Show: R− is infinite.

Answer. Suppose not. Let n be the cardinality of R−. However,
each of the n+ 1 elements on the list

−1,−2, . . . ,−n,−(n+ 1)

are negative real numbers. This is a contradiction.

3. Show: ∀ n ∈ Z, 1− 2n 6= 0.

Answer. Suppose not. So there is some n ∈ Z such that 1−2n =
0. However, this gives that n = 1

2 , and 1
2 6∈ Z. This is a

contradiction.

4. Let a, b ∈ R.
Show: If b < a, then [a, b] = ∅.

Answer. Suppose [a, b] is nonempty. Hence, we have some x ∈ R
such that a ≤ x ≤ b. From the transitivity of ≤ it follows that
a ≤ b. Hence, it is not true that b < a.

5. Let A and B be sets.
Show: If A ⊆ Bc, then A ∩B = ∅.

Answer. Suppose A∩B is nonempty. So we have some x ∈ A∩B.
That is, x ∈ A and x ∈ B. Since x ∈ A and x 6∈ Bc, it follows
that A * Bc.

6. Let f be a real function.
Show: If f is unbounded below, then f2 is unbounded above.

Answer. Suppose f2 is bounded above. Hence, we have some
M ∈ R such that

∀ x ∈ R, f2(x) ≤M.

In fact, it must be that M ≥ 0. It then follows that

∀ x ∈ R, f(x) ≥ −
√
M.

(This assertion can be proven by contradiction.) Therefore, f
is bounded below.
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Section 2.5

1. Let A, B, and C be sets. Show: A ∪ C ⊆ A ∪B ∪ C.

Answer. Suppose x ∈ A ∪ C. So x ∈ A or x ∈ C.
Case 1 : x ∈ A. Since x ∈ A or x ∈ B or x ∈ C, it follows that
x ∈ A ∪B ∪ C.
Case 2 : x ∈ C. Since x ∈ A or x ∈ B or x ∈ C, it follows that
x ∈ A ∪B ∪ C.

2. Let A, B, and C be sets. Show: (A ∪B) ∩ C ⊆ (A ∩ C) ∪B.

Answer. Suppose x ∈ (A ∪ B) ∩ C. So x ∈ A ∪ B and x ∈ C.
That is, x ∈ A or x ∈ B.
Case 1 : x ∈ A. Since x ∈ A and x ∈ C, we have x ∈ A ∩ C.
Thus, x ∈ (A ∩ C) ∪B.
Case 2 : x ∈ B. Thus, x ∈ (A ∩ C) ∪B.

3. Let A, B, and C be sets. Show: A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

Answer. (⊆) Suppose x ∈ A∪ (B ∩C). So x ∈ A or x ∈ B ∩C.
Case 1 : x ∈ A. So x ∈ A ∪ B or x ∈ A ∪ C. Hence,
x ∈ (A ∪B) ∩ (A ∪ C).
Case 2 : x ∈ B ∩ C. So x ∈ B and x ∈ C. Since x ∈ B, we
have x ∈ A ∪ B. Since x ∈ C, we have x ∈ A ∪ C. Hence,
x ∈ (A ∪B) ∩ (A ∪ C).

(⊇) Suppose x ∈ (A∪B)∩(A∪C). So x ∈ A∪B and x ∈ A∪C.
Case 1 : x ∈ A. Hence, x ∈ A ∪ (B ∩ C).
Case 2 : x 6∈ A. Since x ∈ A ∪ B, it must be that x ∈ B. Since
x ∈ A ∪ C, it must be that x ∈ C. So, x ∈ B ∩ C. Hence,
x ∈ A ∪ (B ∩ C).

4. Show: (0, 2) ∪ [1, 3] = (0, 3].

Answer. (⊆) Suppose x ∈ (0, 2) ∪ [1, 3].
So x ∈ (0, 2) or x ∈ [1, 3].
Case 1 : x ∈ (0, 2). Since 0 < x < 2, we have 0 < x ≤ 3. Thus,
x ∈ (0, 3].
Case 2 : x ∈ [1, 3]. Since 1 ≤ x ≤ 3, we have 0 < x ≤ 3. Thus,
x ∈ (0, 3].
(⊇) Suppose x ∈ (0, 3]. So 0 < x ≤ 3.
(Note: x < 2 or 2 ≤ x.)
Case 1 : x < 2. Since 0 < x < 2, we have x ∈ (0, 2). Thus,
x ∈ (0, 2) ∪ [1, 3].
Case 2 : 2 ≤ x. Since 1 ≤ 2 ≤ x ≤ 3, we have x ∈ [1, 3]. Thus,
x ∈ (0, 2) ∪ [1, 3].
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5. Assume that C ⊆ A and C ⊆ B.
Show: A \ C = B \ C if and only if A = B.

Answer. (→) Suppose A \ C = B \ C. (⊆) Suppose x ∈ A.
If x ∈ C, then x ∈ B.
So consider x 6∈ C. Hence, x ∈ A \C = B \C. Thus, x ∈ B. So
A ⊆ B. Similarly, B ⊆ A. Therefore, A = B.
(←) Suppose A = B. Hence, A \ C = B \ C.

6. Let x ∈ R. Show: |x− 1| =

{
x− 1 if x ≥ 1,

1− x if x < 1.

Answer. Case 1 : x ≥ 1. Since x−1 ≥ 0, we have |x−1| = x−1.
Case 2 : x < 1. Since x − 1 < 0, we have |x − 1| = −(x − 1) =
1− x.

7. Let x, y ∈ R. Show: If |x| > y, then x > y or x < −y.

Answer. Suppose |x| > y.
Case 1 : x ≥ 0. So x = |x| > y.
Case 2 : x < 0. So −x = |x| > y. Multiplication by −1 gives
x < −y.

8. Let a, b ∈ R. Show: If ab > 0, then a
b > 0.

Answer. Suppose ab > 0.
Observe that b 6= 0.
Case 1 : b > 0.
So a > 0, and hence a

b > 0.
Case 2 : b < 0. So a < 0, and hence a

b > 0.
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3.3 Chapter 3

Section 3.1

1. Show that the sum of any two odd integers is even.

Answer. Suppose that m and n are odd integers.
So m = 2j + 1 and n = 2k + 1 for some j, k ∈ Z.
Thus, m+ n = 2j + 1 + 2k + 1 = 2(j + k + 1).
Since j + k + 1 ∈ Z, the sum m+ n is even.

2. Show that the sum of two consecutive odd integers is divisible by 4.

Answer. Suppose that m and n are consecutive odd integers.
So m = 2j + 1 and n = 2j + 3 for some j ∈ Z.
Thus, m+ n = 2j + 1 + 2j + 3 = 4(j + 1).
Since j + 1 ∈ Z, the sum m+ n is divisible by 4.

3. Let n ∈ Z. Show: If 6 | n, then 4 | n2.

Answer. Suppose 6 | n. So n = 6k for some k ∈ Z. Observe
that n2 = 36k2 = 4(9k2). Since 9k2 ∈ Z, we see that 4 | n2.

4. Prove or disprove: For any integers a, b, c, if a - b and b - c then a - c.

Answer. Counterexample: Let a = c = 2 and b = 3. Observe
that a - b and b - c, but a | c.

5. Find gcd(700, 120) by factoring.

Answer. gcd(700, 120) = gcd(22 · 52 · 7, 23 · 3 · 5) = 22 · 5 = 20.

6. Are 3 and 105 relatively prime? Explain

Answer. No. gcd(3, 105) = 3 6= 1

7. Let n ∈ Z+. Show: gcd(n, 2n) = n.

Answer. Observe that n > 0, n | n and n | 2n. Suppose c > 0,
c | n, and c | 2n. Since c is a divisor of n, there is a lemma that
tells us that c ≤ n. Hence, n = gcd(n, 2n).

8. Two spinning gear wheels are adjacent, as pictured.

����A Bq
Gear A has 12 equally-spaced teeth, gear B has n equally-spaced teeth,
and the size of B is such that the spacing between its teeth is the same as
that of A. What necessary conditions on n force every tooth of gear B to
eventually touch the pictured black tooth on gear A?
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Answer. gcd(12, n) = 1. That is, 2 - n and 3 - n.

9. Evaluate lcm(60, 36).

Answer. 60·36
12 = 180.

Section 3.2

1. Find the smallest element of the set

{m : m = 15 + 6n > 0 for some n ∈ Z}.

Answer. 3. It occurs when n = −2.

2. Prove or disprove: If 2n + 1 is prime, then n is prime.

Answer. False. Consider n = 4.

3. Compute each of the following:

(a) 87 div 12.

(b) 55 mod 7.

(c) −47 mod 10.

Answer.

(a) 7.

(b) 6.

(c) 3.

4. Show: ∀ n ∈ Z, 4 - (n2 + 1).

Answer. By the Division Algorithm, we can write n = 4k + r
for some k ∈ Z and r ∈ {0, 1, 2, 3}.
So n2 + 1 = (4k + r)2 + 1 = 4k2 + 8kr + r2 + 1.
Case 0 : r = 0. So, n2 + 1 = 4(k2) + 1.
Case 1 : r = 1. So, n2 + 1 = 4(k2 + 2k) + 2.
Case 2 : r = 2. So, n2 + 1 = 4(k2 + 4k + 1) + 1.
Case 3 : r = 3. So, n2 + 1 = 4(k2 + 6k + 2) + 2.
In each case, we see that (n2 + 1) mod 4 = 1 or 2 (never 0).
Hence, 4 - (n2 + 1).

5. Compute each of the following:

(a) b−6.3c.
(b) d3.2e.
(c) d−5.8e.
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Answer.

(a) −7.

(b) 4.

(c) −5.

6. Let n ∈ Z. Show: bn+ 1
2c = n.

Answer. Observe that n ∈ Z and n ≤ n+ 1
2 < n+ 1.

7. Prove or disprove: ∀ x, y ∈ R, bxyc = bxcbyc.

Answer. Counterexample: Let x = 1
2 and y = 2.

So bxyc = b1c = 1 and bxcbyc = 0 · 2 = 0. However, 1 6= 0.

8. The identification number d1d2 · · · d10 on an American Express Traveler’s
Check satisfies d1 + d2 + · · · + d10 mod 9 = 0. Determine the check digit
# on the check number 536178450#.

Answer. 6.

9. The UPC number for Huggies Ultratrim Diapers is read in as

0 36000 5219# 8,

where # is a digit that cannot be read. Determine the value of that
missing digit.

Answer. 4.

10. Use the letter to number conversions “ ” = 0, A = 1, ... , Z = 26 and
a shift cipher with n = 27 and encrypting shift value b = 5 to decrypt
“HFQHZQZX”.

Answer. “CALCULUS”.

11. Use the letter to number conversions “ ” = 0, A = 1, ... , Z = 26 and
a shift cipher with n = 27 and encrypting shift value b = 14 to decrypt
“JEB TN FJRW”.

Answer. “WRONG ANSWER”.

12. Prove: ∀ n ∈ Z, bn2 cd
n
2 e = bn

2

4 c.

Answer. Case 1 : n is even.
Note n

2
n
2 = n2

4 .
Case 1 : n is odd.
Note n−1

2
n+1

2 = n2−1
4 .
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13. A binary linear code turns a 3-digit binary message b1b2b3 into a 6-digit
code word b1b2b3b4b5b6 according to the following formulas

b4 = (b1 + b2 + b3) mod 2

b5 = (b1 + b2) mod 2

b6 = (b2 + b3) mod 2.

(a) Make a table for the entire code.

(b) What is the weight of this code?

(c) Using nearest neighbor decoding, to what message should the code
word 111010 be decoded?

Answer. (a) Message Code Word
000 000000
001 001101
010 010111
011 011010
100 100110
101 101011
110 110001
111 111100

(b) 3.
(c) 011.

Section 3.3

1. Use any method you wish to find integers x, y such that gcd(55, 35) =
55x+ 35y.

Answer. gcd(55, 35) = 5 = 55(2) + 35(−3).

2. Prove or disprove that 20x+ 16y = 2 has a solution with x, y ∈ Z.

Answer. There is no such solution, since 4(5x + 4y) = 2 would
imply that 4 | 2.

3. Compute gcd(68, 20) using Euclid’s algorithm. Show your work.

Answer.

gcd(68, 20) = gcd(20, 8) since 68 = (20)3 + 8
= gcd(8, 4) since 20 = (8)2 + 4
= gcd(4, 0) since 8 = (4)2 + 0
= 4 obviously.

4. Use Euclid’s algorithm to find gcd(88, 32) and to write it in the form
88x+ 32y for x, y ∈ Z.
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Answer.

gcd(88, 32) = gcd(32, 24) since 88 = (32)2+24, so 24 = 88−(32)2
= gcd(24, 8) since 32 = (24)1+8, so 8 = 32−(24)1
= gcd(8, 0) since 24 = (8)3+0
= 8 obviously.

Therefore,

8 = 32− (24)1 = 32− (88− 2(32))1 = (88)(−1) + (32)(3).

That is, gcd(88, 32) = 8 = 88x+ 32y for x = −1 and y = 3.

5. Show: ∀ n ∈ Z, n and 2n+ 1 are relatively prime.

Answer. (−2)(n) + (1)(2n+ 1) = 1.

6. Let m,n, c ∈ Z. Is it always true that, if c | mn and c - m then c | n?
Why?

Answer. No. Consider m = n = 2 and c = 4.

Section 3.4

1. Show that 1.403 is rational.

Answer. 1.403 = 1403
1000 and 1403, 1000 ∈ Z with 1000 6= 0.

2. Show that 0.234 is rational.

Answer. Let x = 0.234. So 10x = 2.34 and 1000x = 234.34.
Since 990x = 1000x− 10x = 232, it follows that
0.234 = x = 232

990 = 116
495 .

Since 116, 495 ∈ Z and 495 6= 0, we see that 0.234 is rational.

3. Let r ∈ R. Use only the definition of Q to show: If r ∈ Q, then r
6 ∈ Q.

Answer. Suppose r ∈ Q. So r = a
b for some a, b ∈ Z with b 6= 0.

Observe that r
6 = a

6b and a, 6b ∈ Z with 6b 6= 0. Thus, r
6 ∈ Q.

4. Let a, b ∈ Z. Show: If a
b is in lowest terms and is positive, then b

a is in
lowest terms.

Answer. Suppose a
b is in lowest terms and is positive. Since a

b
is in lowest terms, gcd(a, b) = 1 and b > 0. Since a

b is positive,
a > 0. Since a > 0 and gcd(b, a) = gcd(a, b) = 1, it follows that
b
a is in lowest terms.

5. Write 14
33 in decimal form without using a calculator. Show your work.
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Answer.

. 4 2
33 ) 1 4. 0

- 1 3 2
8 0 remainder 8

- 6 6
1 4 remainder 14

So 14
33 = 0.42.

6. Show that
√

11 is irrational by mimicking the proof that
√

2 is irrational.

Answer. Suppose
√

11 is not irrational. Write
√

11 = a
b in lowest

terms. So b
√

11 = a. So b211 = a2. So 11 | a2. Since 11 is prime,
11 | a. Write a = 11c. So b211 = a2 = 112c2. So b2 = 11c2.
So 11 | b2. Since 11 is prime, 11 | b. So gcd(a, b) ≥ 11. This
contradicts the assumption that a

b is in lowest terms.

7. Use the result from problem 1 to show that 3√
11−1

is irrational.

Answer. Suppose to the contrary that r = 3√
11−1

is rational. So
√

11 = r+3
r . Since r is clearly nonzero, the arithmetic properties

of Q guarantee that r+3
r is rational. This contradicts the result

from problem 1 that
√

11 is irrational. Hence, it must be that
3√

11−1
is irrational.

8. Show that log2(11) 6∈ Q.

Answer. Suppose to the contrary that log2(11) ∈ Q. Write
log2(11) = a

b , with a, b > 0. So 2
a
b = 11. So 2a = 11b. By

the Fundamental Theorem of Arithmetic, a = b = 0. This is a
contradiction.

9. Is the product of irrational numbers always irrational? Justify your an-
swer.

Answer. No. E.g. x = y =
√

2, xy = 2.

10. Show: ∀ x ∈ R, if x2 6∈ Q, then x 6∈ Q.

Answer. Suppose x ∈ Q. Hence, the product x2 ∈ Q.

11. Use the Rational Roots Theorem to show that
√

1 +
√

2 6∈ Q.
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Answer. Scratch work.
Let r =

√
1 +
√

2.
So r2 = 1 +

√
2.

Hence, r2 − 1 =
√

2.
So r4 − 2r2 + 1 = 2.
Therefore, r4 − 2r2 − 1 = 0.

Proof.
Let f(x) = x4 − 2x2 − 1. By the Rational Roots Theorem, the

only possible rational roots of f are ±1. Of course,
√

1 +
√

2

is neither 1 nor −1. Since f(
√

1 +
√

2) = 0, it follows that√
1 +
√

2 must be irrational.

12. Show that 1√
2+
√

3
is algebraic.

Answer. Let x = 1√
2+
√

3
=
√

3 −
√

2. So x2 = 5 − 2
√

6. Since

x2 − 5 = −2
√

6, we see that x2 − 10x + 25 = (x2 − 5)2 = 24.
Thus, x2−10x+1 = 0. Since 1√

2+
√

3
is a root of the polynomial

x2−10x+1 (which has integer coefficients), 1√
2+
√

3
is algebraic.

Section 3.5

1. Determine if the following statements are True or False.

(a) 28 ≡ 10 (mod 3).

(b) 4 ≡ 0 (mod 8).

Answer.

(a) True.

(b) False.

2. In a single year, is it possible for July 4th and Christmas (December 25th)
to occur on the same day of the week? Justify your answer.

Answer. No, since (27 + 31 + 30 + 31 + 30 + 25) mod 7 = 6 6= 0.

3. Let a, b, n ∈ Z with n > 1.
Show: If a ≡ −b (mod n), then a2 ≡ b2 (mod n).

Answer. Suppose a ≡ −b (mod n). So n | (a + b). That is,
(a+ b) = nk for some k ∈ Z. Observe that

a2 − b2 = (a+ b)(a− b) = n · k(a− b)

and k(a− b) ∈ Z. Thus, n | a2 − b2. That is, a2 ≡ b2 (mod n).

4. Compute (368135 + 35) mod 9.
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Answer. Observe that

368135 = 9 · 368133 ≡ 0 · 368133 ≡ 0 (mod 9).

Hence, (368135 + 35) mod 9 = 35 mod 9 = 8.

5. Use the fact that 34 ≡ 1 (mod 10) to compute 353186 mod 10.

Answer. 353186 ≡ (34)13296 · 32 ≡ 113296 · 9 ≡ 9 (mod 10). So,
353186 mod 10 = 9.

6. Show: ∀ n ∈ Z, (3n4 + 1)2 ≡ 1 (mod 5).

Answer. Let n ∈ Z. First observe that n4 ≡

{
0 if n ≡ 0 (mod 5),

1 if n 6≡ 0 (mod 5).

So, 3n4 + 1 ≡

{
1 if n ≡ 0 (mod 5),

−1 if n 6≡ 0 (mod 5).

Since 12 = (−1)2 = 1, we see that (3n4 + 1)2 ≡ 1 (mod 5).

7. Use Fermat’s Little Theorem to help you compute 7123432 mod 11.

Answer. Since 11 is prime and 11 - 7, Fermat’s Little Theorem
tells us that 710 ≡ 1 (mod 11). Hence,

7123432 ≡ (710)12343 · 72 ≡ 112343 · 49 ≡ 49 ≡ 4 (mod 11).

Therefore, 7123432 mod 11 = 4.

8. A certain product ID code is 4 characters long and is constructed using
only the letters in Table 3.1. A linear cipher with n = 7, a = 3, and b = 1

A B C D E F G
0 1 2 3 4 5 6

Table 3.1: Converting Letters to Numbers

(i.e. y = (3x+ 1) mod 7) is used to encode the ID’s.

(a) Encrypt ‘FACE’.

(b) Decrypt ‘GDFG’.

Answer.
(a) CBAG.
(b) EDGE.

9. Use binary expansion and repeated squaring to compute 207 mod 403.
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Answer. 266.
Note that 7 = 4 + 2 + 1, and 202 ≡ −3, 204 ≡ 9 (mod 403).
Also, 9 · (−3) · 20 ≡ −540 ≡ 266 (mod 403).

10. A company is using the RSA encryption method with p = 7 and q = 17,
so n = 119. The number a = 35 is used to encode messages via y =
x35 mod 119. Note that c = 11 is a multiplicative inverse of a modulo 48.

(a) Encrypt the message x = 2.

(b) Decrypt the message y = 5.

Answer.
(a) 25. (Note that 27 ≡ 9 (mod 119).)
(b) 45. (Note that 53 ≡ 6 (mod 119).)

11. Find and simplify [13]10 + [7]10.

Answer. [20]10 = [0]10.


