
Chapter 2

Solutions

1. (a) By contradiction. Suppose
√

3 is rational, so
√

3 = m
n where m,n are

integers and m
n is in lowest terms. Squaring, we get m2 = 3n2. Thus m2 is

a multiple of 3, and so by Example 1.3, m is a multiple of 3. This means
m = 3k for some integer k. Then 3n2 = m2 = 9k2, so n2 = 3k2. Therefore n2

is a multiple of 3, hence so is n. We have now shown that both m and n are
multiples of 3. But m

n is in lowest terms, so this is a contradiction. Therefore√
3 is irrational.

(b) By contradiction again. Suppose
√

3 = r+ s
√

2 with r,s rational. Squar-
ing, we get 3 = r2 + 2s2 + 2rs

√
2. If rs �= 0 this gives

√
2 = 3−r2−2s2

2rs . Since
r,s are rational this implies that

√
2 is rational, which is a contradiction. Hence

rs = 0. If s = 0 then r2 = 3, so r =
√

3, contradicting the fact that
√

3 is irra-
tional by (a). Therefore r = 0 and 3 = 2s2. Writing s = m

n in lowest terms, we
have 3n2 = 2m2. Now the proof of Proposition 2.3 shows that m and n must
both be even, which is a contradiction.

2. (a) Suppose x =
√

2+
√

3/2 is rational. Then x2 = 2+ 3
2 + 2

√
3, hence√

3 = 1
2 (x

2 − 7
2 ). As x is rational this implies

√
3 is rational, a contradiction by

Q1(a). Hence
√

2+
√

3/2 is irrational.

(b) By (a), 1+
√

2+
√

3/2 is the sum of a rational and an irrational, hence
is irrational by Proposition 2.4(i).

(c) We have 2
√

18−3
√

8+
√

4 = 6
√

2−6
√

2+2 = 2, which is rational.

(d) Let x =
√

2+
√

3+
√

5. Then (x−
√

2)2 = (
√

3+
√

5)2, which gives
x2 −6−2

√
15 = 2x

√
2. Squaring again, (x2 −6)2 +60−4(x2 −6)

√
15 = 8x2,

hence
√

15 = ((x2 −6)2 −8x2 +60)/4(x2 −6). Therefore if x is rational, then
so is

√
15. But

√
15 is irrational by the hint in the question. Hence so is x.

(e) This is sneaky one. Observe that (
√

2+
√

3)2 = 5+2
√

6, so
√

5+2
√

6=√
2+

√
3, and hence

√
2+

√
3−

√
5+2

√
6 = 0, which is rational.
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3. (a) True: if x = m/n and y = p/q are rational, so is xy = mp/nq.
(b) False: for a counterexample take the irrationals

√
2 and −

√
2. Their

product is −2, which is rational.
(c) False: the product of the two irrationals

√
2 and 1+

√
2 is

√
2+2, which

is irrational.
(d) True: we prove it by contradiction. Suppose there is a rational a �= 0 and

an irrational b such that c = ab is rational. Then b = c
a , and since a and c are

rational, this implies that b is rational, a contradiction.

4. (a) Let c = x+a
x+b and suppose c is rational. Then x+ a = c(x+ b), which

gives x(c− 1) = a− bc. If c �= 1 then x = a−bc
c−1 , which is rational since a,b,c

are rational. As x is irrational, this implies that c = 1, hence a = b.

(b) Let c = x2+x+
√

2
y2+y+

√
2

and suppose c is rational. Multiplying up gives
√

2(c−

1) = x2 + x− cy2 − cy. If c �= 1 this gives
√

2 = x2+x−cy2−cy
c−1 , which is rational.

Hence c = 1, which implies x2 +x = y2 +y. This yields (x−y)(x+y+1) = 0,
hence either x = y or x+ y =−1.

5. By contradiction. Let α =
√

2+
√

n, and suppose α is rational. Then α −√
2 =

√
n. Squaring both sides, α2 +2−2α

√
2 = n, so 2α

√
2 = α2 +2−n.

Since clearly α �= 0, we can divide through by 2α to get
√

2=(α2+2−n)/2α .
As α is rational, this implies that

√
2 is rational, which is a contradiction.

Hence α is irrational.

6. Let a and b be two different real numbers with b > a. Choose a positive
integer n such that b− a > 1

n . Then there is a rational of the form m
n lying

between a and b.
Also, choose a positive integer m such that b− a >

√
2

m . Then there is a

number of the form k
√

2
m lying between a and b, where k is an integer; by

Proposition 2.4(ii), k
√

2
m is irrational unless k = 0, in which case a < 0 and

b > 0 and we apply the above argument replacing a by 0.

7. Let an =
√

n−2+
√

n+2. Then a2
n =(n−2)+(n+2)+2

√
(n−2)(n+2)=

2n+2
√

n2 −4. We are given that an is an integer. This implies
√

n2 −4 is ra-
tional. By the hint given, this means that n2 − 4 must be a perfect square, i.e.
n2−4=m2 for some integer m. Then n2−m2 = 4. Staring at the list of squares
0,1,4,9,16, . . ., we see that the only way the two squares n2,m2 can differ by
4 is to have n2 = 4,m2 = 0. Hence n = 2, so an = 2.

8. Let r,b,g be the numbers of red, blue and green salamanders at some point
in time. If a red and a green meet, these numbers change to r−1,b+2,g−1, so
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the difference between b and r is increased by 3; if two reds meet, the numbers
change to r−2,b+1,g+1, and again the difference between b and r increases
by 3; and so on — you can easily check that whenever two salamanders meet,
the difference between b and r either stays the same, or increases or decreases
by 3. Initially, r − b is 15− 7 = 8. This cannot be changed by adding and
subtracting multiples of 3 to 30− 0 = 30. Hence it is not possible for all the
salamanders to be red at some point.
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