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CHAPTER 2

Schrodinger Equation
and Wave Function

2.1 Write the Schrédinger equation for a particle in a potential sin x.

The Schrodinger equation is

T .
lﬁa——%w—l—smxd).

2.2 For a particle carrying a charge ¢ in a uniform time-dependent electric
field E(t) the force experienced by it is F = =V (—¢E(t) - X). Write the
Schrodinger equation of the system.

The Schrodinger equation is

Oy n_,
h— =——V*Y — (¢E(t) - X)v .
ih—, 5V U= (¢B(t) - X)y
2.3 Write the Schréodinger equation for a charged particle moving in an
electromagnetic field with the Hamiltonian

1 q 2
H:—( ——AX,t) X, 1) .
5, (P ZAX ) +a9(X,1)
Rewrite the Schrodinger equation for A = (Bz,0,0) and ¢ = —E=z.

The Schrodinger equation is

O 1 q,\>
155 = %(p—zA) U+ qoyp
1 2
- (—h2v2w + Lt -p(lay) - 1A pw) + qov
m c c c
1 22 .4 .. q 42 2
- [—h V2 + 2ihiA - vy +indypv - A+ LA w} +qo .
2m c c c

7
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2.5

2.6

Solutions to the Exercises in Quantum Mechanics I: The Fundamentals

For A = (Bz,0,0) and ¢ = —Ez we have

1 2
ihaﬂ = — |-wV2% + 2ihiBay, + LB2%p| — qEzy .
gt 2m c c?

What is the Schrédinger equation of a system of two particles of

masses mp and mo carrying charges ¢; and ¢o respectively with

1 1
H=_—pi+-—ps+ DL nd T2 = |r1 —12|?
2m1 2m2 12

0
The Schrédinger equation iha—qf = H1 becomes

R R _,
IFLE - —Q—Tnlvl'(/) — Q—WLQVQ,(/) +

4192
T12

v,

where

Starting from the Schrédinger equation for 1, obtain the equation for

Y.
The Schrédinger equation for ) is

TR
ihr =~V + V(X 1)

Taking complex conjugate of the above equation we get

o 12

s - _ 2 % * *
i SV VX

This is the Schrédinger equation for ¢*.

If By and Es are the eigenvalues and ¢; and ¢o are the eigenfunctions
of a Hamiltonian operator then find whether the energy corresponding
to the superposition state ¢1 + ¢ is equal to E71 + Es or not.

‘We have H¢1 = E1 ¢1 and H¢2 = E2¢2. Then

H(¢1+¢2) = Hor+ Hepo
Ei1¢1 + Eago
# (B + E2) (1 + ¢2) -
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2.7

2.8

2.9

2.10

Schrodinger Equation and Wave Function B 9

h2
Express the Schrédinger equation {—Q—VQ + V(x,y,z)] (z,y,2) =
m

Evy(z,y, z) in the spherical polar coordinates defined by x = rsin 6 cos ¢,
y =rsinfsin¢g, z = rcosf and in the parabolic coordinates defined by
§=r(l—cosh), n=r(l+cosh), p = ¢cosb.

In spherical polar coordinates the Schréodinger equation is
CR1 (a0, L 0 (0
om |r2or \| or 2snead \O 99
o V(0.0)] 606.6) = Bur 0.0
a9 r,u, r,u, = r,u, .
r2gin? 6 0¢?

In the parabolic coordinates the Schrédinger equation is

(D) 2 () L)
c+n\oc \coe) T am \Ton ) T enog?

+V(£,77,¢)]1/1 =B

h2
2m

Find the condition under which both (X, ) and ¥*(X, —t) will be the
solutions of the same time-dependent Schrodinger equation.

The Schrédinger equations for (X, t) and *(X, —t) are given by

[ R [
ihor = gV VXY,
* 12

ih —— V2 + VX, —t
ih 5 VU V(X i
respectively. The above two equations are identical if V(X t) =

V*(X, —t), that is if V' is real and an even function of t.

What is the major difference between real and complex wave functions?

The probability current density J is given by
h * *
J= = [V — V]
mi
If 4 is real then J = 0. If ¢ is complex then J need not be zero.

What is the difference between the wave function ¢ = el(h*=« and
,(/)2 _ ei(k~X—wt)?

11 is a plane (probability)wave travelling along a one-dimensional line.
1o is a three-dimensional (probability)wave.
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10 W Solutions to the Exercises in Quantum Mechanics I: The Fundamentals

2.11 Write the Hamiltonian of a photon.

For a photon H = E = mc? = mcc = pc.

2.12 What is the physical meaning of (z) = 0?

1 is symmetric or antisymmetric with respect to x = 0.

2.13 Write the operator forms of kinetic energy and angular momentum L =
r X p.

The operator form of kinetic energy mv?/2 is

1 p? h?
KE)y = -mv2=2_ — _ 2 g2
(KB Jop = gmv™ =5 = =5V

For L = r x p we have with r = iz + jy + kz

i j k
L = rxp=jz y =z
Pz Py Pz

= i(yp: — zpy) +j(2pz — 2p.) + k (xpy — Yps) -

The components of L are

t~
<
I
=
7N
™
Q
Jr
S

> Qo
N——
I
S
7N
&
Flo <
|
N
Q

ERE

d
2.14 Consider the one-dimensional Schrodinger equation u(x) = —— In¢(z).
x

Obtain the Schrodinger equation under the change of variable
u(w) = S Iy (z)
 dx '

The general transformation is u = —, /¢ or ¥, = —ut. Then ¢, =
—uz1) — uth,. Now, the Schrédinger equation is rewritten as (with A =
2mE/h? and g = 2mV/h?)

—uzth —uthy + (A —g)p =0 or —uxw—l—uzz/)—l—()\—g)z/)zo.

That is, u, —u? — A+ g =0.
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Schrodinger Equation and Wave Function B 11

2.15 Find the conditions to be satisfied by the functions f and g such that

under the transformation ¢ = f(z)F(g(z)) the Schrodinger equation
ez + (B — V)1p =0 can be written as

Fog +Q(9)Fy + R(g9)F(g9) =0. (2.1)
Then show that

- 1 QZ g// / g// 2
E—V—(g)2|:R—§Qg_7:|+(2—g/) —(2—9/) . (2.2)

In terms of f and F' the Schrédinger equation is written as
fF'+2f'F + f'F+(E-V)fF=0, (2.3)

where prime denotes differentiation with respect to x. Since F' is F'(g(x))
we have

F'=Fyqg', F'= Fgg(gl)2 + Feg” . (2.4)
Then Eq. (2.3) becomes
2f/ g// f// (E _ V)
F99+(E+g_/2 Fy+ g’2f’2+ g2 F=0. (2:5)
Comparison of Egs. (2.1) and (2.5) gives
2f'/ g// f// E _ V
ity et e (20

The conditions on f and g are given by Eqs. (2.6). From Egs. (2.6) we
obtain

/ / 1
f? = 92Q = éq_g/ (2.7a)
E-V = ¢?°R- % : (2.7b)
From (2.7a) we find f”/f and substituting it in (2.7b) we obtain
! " 2
UE S

That is,
f// B d f/ f/2
7-wlf)s
_ d(gQ g\, (9@ ¢V
Code \ 2 2¢ 2 24

1 g// g/QQZ g// 2
= EQg—<2—g,)+ Tt lag) (2.9)

Substituting the above in Eq. (2.7b) we obtain the Eq. (2.2).
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12 W Solutions to the Exercises in Quantum Mechanics I: The Fundamentals

2.16

2.17

2.18

2.19

What are the effects of addition of a constant to a potential on the
time-independent Schrédinger equation and the energy levels?

The time-independent Schrédinger equation with the addition of a con-
stant « to a potential is given by

h2
(——V2 +V+ a) Up = Epy, .
2m
This can be rewritten as
h2
<_%V2 + V) Un = (Bp — @) thn = Epiby

where E! = E, — a. Therefore 1, remains the same but the energy
eigenvalues of the new system are E,, — a.

Which of the following wave functions are admissible in quantum me-
chanics? State the reasons.

(a) e=*". (b) sechz. (c) e~*. (d) tanhz. (e) sinz, 0 < z < 2m. (f) sina,
—00 < x < oo. (g) Ve **. (h) tanz. (i) secz. (j) ze (k) 1 — 22,
-l<zx <1

The conditions to be satisfied by a wave function are: (i) ¢ should be
normalizable. (ii) It should be single-valued. (iii) It must be finite at
every point. (iv) It and its first partial derivatives must be continuous.

The functions (a), (b), (e), (j) and (k) satisfy all the above conditions
and hence they are admissible wave functions (verify).

The functions (c), (d), (f), (h), (i) are nonnormalizable. The function
(g) is multivalued. Therefore, they are not admissible wave functions.
Normalize the wave function ¢ = Neike—a?/(20%)

From the normalization condition we obtain
0 0 .
1:/ ¢*1/1d$:N20/ e ¥ dy = N20\/7 .
—o0 —o0

Thus N =1/ (aﬁ)l/Q.

Find the value of N for which the wave function ¢(z) = N for |z| < a
and 0 for |z| > a is normalized.

The normalization condition gives

a

1

a
Prpdr = N2/ dz = N%z|*,

—a —a

= 2aN?.
Thus, N =1/V2a.

13/11/14 6:56 PM
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Schrodinger Equation and Wave Function B 13

2.20 Normalize the wave function 1 = e |*lsinaz. It is given that
o0
/ e “sinazdr = a?/(1 + a?).
0

The normalization condition gives

o0
N2/ e 2l gin? ar da

—00

0 e’}
N? / e?* sin? ax dz + N? / e 2" sin? az dz
0

— 00

oo
2N? / e 2% sin? ax dz
0

N2 N2 o]
— T2 |co _ 7/0 e Ycosardr
N?2  N?

2 2

N? N? a?
S S I
2 2 [ 1+a2]
N2a3

2(14+a?)

That is, N = \/2(1 + a2)/a3.

2.21 A particle of mass m moves in a one-dimensional box of length L with
origin as the centre. If the wave function of this particle is ¥ (z) =
Nz(1 — 22) for |z| < L/2 and 0 otherwise find the factor N.

N can be determined from normalization condition. We obtain

Thus,

L/2 )
1 = N2/ xz(l—xz) dx
—L/2

L/2

= N2/ (x2—2x4+x6) dz
—L/2

2 {L_?’ o ]

12 160 148

LS L5 L7 -1/2
- 4+ —
{12 160 448]

If L is very small then N ~ /12/L53.
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14 MW Solutions to the Exercises in Quantum Mechanics I: The Fundamentals

2.22 A quantum mechanical particle moving in one-dimension has the wave
function (z) = cxe™1*1/*, —00 < & < 0o where ¢ and b are constants
(b > 0). Find the probability that the position of the particle lies in the

region —oo < x < b.

First, we normalize the wave function. We obtain

oo

— 00

02/ x2e 22/t 4y
— 00

0 e}
02/ x2€2x/bdx+c2/ x2€—2x/b dz
0

—00

Y dz

oo
202/ 22e 2/ qy
0

Substituting 22/b = y in the integral, we get

b3c2 0
1=2= yle Vdy .
4 Jo

Integrating by parts we get

b32
1=2%

2

That is ¢? = 2/b°

P

e} bSCZ o] b302
“Vdy = —— Ty = —
/0 ye Y 2/, € Y B

or ¢ = /2/b3. The probability P(—oco < x <) is

b
/ Y i de

— 00
9 0 b
= / w2€2\m\/bdx_’_/ 226-28/b 4y
b —00 0
2 bd /0 ) b )
3 | ye’ydy+/ yeVdy
b 8 [ . 0
1 00 b
1 / yze_ydy—&—/ yle Y dy

0 0

Integrating by parts we get

P—1—i(b2+2b+2)
= 1 :

13/11/14 6:56 PM
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Schrodinger Equation and Wave Function B 15

2.23 What is the probability current density corresponding to ¢ (z) = Ae™**

where A and « are constants?

The probability current density is given by

o .
J =5~ [V —9VyT] .
mi
Since the given 1) is real, ¥* =,
h

J =
2mi

()Y — V] = 0.

2.24 A free particle in one-dimension is in a state described by ¢ =

Aelper=Et)/h o B e=ilpza+Et)/h where p, and E are constants. Find
the probability current density.

J is given by
h .
I = IV
m
_ EIm{{A*efi(pwszt)/h n B*ei(pmerEt)/h}
m
o Pz {Aei(pmx—Et)/h n Be—i(pxw-&-Et)/h}}

h

I 2 1 pj2
= DA B

2.25 If the wave function of a particle at t = 0 is ¢(x,0) = Ne—ike—(?/2a%)

calculate the probability density and current density.
First, we normalize the given wave function. We obtain
(oo} o0 5
1:/ w*z/)dx:2N2a/ eV dy = N2a/7 .
—00 0
That is N = (1/(a?n))"/*. The probability density is obtained as

1
P(z) = —at/a*

e
AN/ T

Then the current density is determined as

Ia) = g (v - v )

2mi dx dx
hk 1 2
= — e
m a\/T
hk
= —P(x).
"~ p(a)
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16 MW Solutions to the Exercises in Quantum Mechanics I: The Fundamentals

2.26

2.27

2.28

1
o

1/2
For the Gaussian wave function ¢ (z) = ( ) e~ /20 calculate

the probability current density.
The probability current density is given by

h d dy*
(%-%)

- 2mi dx dx

For any real v

LA dy*
¥ E_wdx o

Then J = 0. Therefore, for the real Gaussian function J = 0.

0.

Verify whether the wave function ¢ = N eike=2%/(20%) gatisfies the conti-
nuity equation or not.

0 dJ
The continuity equation is given by a—f + EP 0. For the given function
T

p=*p = N2e—2°/a” and % = 0. Further

J = Elm<w*d—¢)
m dz
R —22/a2? /.
= EIm(NQe / (1k:—x/a2))
N2hk 2, 2

o e " /a ]
m

Then
d
S _ -2

N2hk _2?/a?
— = -2——xe .
dz ma

2

Now the continuity equation becomes ze~*"/%" = 0 which is true only if

x = 0. Hence, the given 1) does not satisfy the continuity equation.

The wave function of a ginear harmonic oscillator with potential V' =
mw?z? /2 is ¢ = xe~mwT /(2h)  Find its energy.

The Schréodinger equation for a potential V is
2m

For the given potential and 1 the above equation becomes

—3mw miw? 2mE m2w?

3 3 _
5 T+ h2x+h2x— th—O.

From the above equation we get E = 3fiw/2.

13/11/14 6:56 PM
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Schrodinger Equation and Wave Function B 17

2.29 If ¢ = /1/Lcos(wx/(2L)) for the system confined to the potential
V(xz) =0 for |x] < L and oo for |z| > L then calculate E.
The Schrodinger equation for the given system is
2m

Then

h? ( T )2 T h27? "

h2
E = ——Wyr = B _ = —
v om Ve = 577 \3L) 9L T 3wz
Thus. E = h?72/(8mL?).

2.30 The wave function of a particle confined to a box of length L is
2/L sin(rz/L) in the region 0 < z < L and zero everywhere else. Cal-
culate the probability of finding the particle in the region 0 < 2 < L/2.

‘We obtain
L/2
PO<az<L/2) = Y*da
0
9 [L/2
= Z/ sin? %dx
0

I 2 1
= Z/o (1—cos<%>>dx:§.

2.31 Write the law of conservation of energy H = T + V in terms of expec-
tation values.

We write (H) = (T) + (V).
2.32 Are the wave functions

1 \/2 1 1/2 .
- = —r/ag d = 9 — | e 7/(2a0)
n=(ag) e () (-3)

of the electron in hydrogen atom orthogonal?

The orthogonality integral is calculated as

/ PiYodr / (Q_L) 2e—31/200 g
0 0 ag

6/ yle Y dy—2/ yle ¥ dy

0 0

x 6/ yZe_ydy—6/ yle Y dy
0 0

= 0.

<

o0
Since / Y] odT = 0, the given two wave functions are orthogonal.
0

13/11/14 6:56 PM
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2.33 Find the potential corresponding to the following wave functions:

(2) ¥ = 1—/4 2B = hw/2.

(b) ¢ = Asin(rz/(2L)) for |z| < L and 0 for |z| > L, E = h?w?/(8mL?).

(c) ¥ = axe PrelB/N,

(d) v = (mVo/h)e % for x > 0, (mVy/h)ek® for < 0 and E =
—-mVy/(2h?), k* = mVy/h2.

(a) The eigenvalue equation Hiy) = E1 is

_h2 de

h2
e PV =B or V= oy, + B

Substituting the given ¢ and E in the above equation we get

K2 d 12
Vi) = 2mdx( )1/)+Ez/)——( ¥+ %)) + By
Then
h2 h2 hw
V= (-142*)+E=—(*-1)+—.

2m 2m

(b) For the given wave function we obtain

R? d w
h2 2
= Y+ By
—Ez/)—l—El/)
0.

Therefore, V(z) =0 for || < L and oo for |z| > L.

(c) Using the given wave function we get

Vy = %aeiE/h % (efﬁm — Bz efﬁm) + Evy
= %aeiE/h (=Be T — 2Bze 7" + Ba?e™PT) + By
or
Vaze Prelf/h = %aeiEm (—Be_m — 2Bze P 4 52x26_ﬁx) + E .

13/11/14 6:56 PM
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Schrodinger Equation and Wave Function B 19

That is,

“oam\ oz

V—h—2< g 26+5%)+E.

(d) For the given wave function for > 0

2 d R,
Vip = g (k) + Bt = )+ By

k? [ h?
Then VZ? (——1). Similarly, for * < 0 we obtain V =

m
k2 [ h?
_(__1>.

2 \m

A particle of mass m is confined in the infinite square-well potential V' =
0 for 0 < x < L and V = oo otherwise. It has the normalized stationary
state eigenfunctions ¢, (z) and eigenvalues E, = n2?h%72/(2mL?). Its
wave function at time t = 0 is given by (z,0) = (¢1(2) + ¢a(2))/V2.
What is the smallest positive time 7 for which ¢ (z, t) will be orthogonal
to ¥(x,0)?

The wave function v (z,t) is

Y(x,t) = % (¢le—iE1t/h + ¢2e—1E2t/h> ‘

At t = 7 the condition for ¢(z,0) and t(x,t) to be orthogonal is
L
| v @nute0 e —o.
0

We get

L
| (06574 636 5) (614 62) do = 0.
0

Since fOL Gmbn Az = 8pn we get e P17/1 4 e1B27/h — () That is

ElT ElT EQT . EQT

COST —I—isinT —I—COST -HSIHT =0.
Equating the real and imaginary parts to zero separately we get
EqT FEor . Byr . ot
COST:_COST’ SIHT:_SIHT'
We rewrite the above conditions as
FEiT 7w+ Bt . BT . om+ Ear
COST:COST, smT:smT.

Thus, 7 = hn/(Ey — Es). Since Ey > Ey we write 7 = hn/(E2 — Ey).
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20 B Solutions to the Exercises in Quantum Mechanics I: The Fundamentals

2.35 Show that (xp, + pyx) is real.

Consider (pzx). We obtain
waa) = [ wpavds

- / (pLo) 29 da

— 00

([
([Cvmen)

= (zps)" .

Now, (xps + psx) = (xps) + (Pax) = (xps) + (xps)* = 2Re(xp,). Thus
(xpg + ppx) is real.

2.36 Show that (A™) = (A)™ in its eigenstates.
Let Ay = atp. Then we obtain
any = [ warvar

= / YFAT Ay dr

a/ AV Ly dr

a” / Y dr
an

We find (A) = /OO Y AYdr = oz/OO Y 1pdr = . Hence, (A™) = o™ =
(A, - -

2.37 Calculate (p2) for ¢ = Vke ¥l

We obtain
oo 0 d2
(p3) = / i de = —h2/ e kel @efklzl dx .
The above equation can be rewritten as
0 2 o0 2
(p2) = —hzk{/wek @ek dac—l—/o ek@ek dz
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Then we obtain

0 0o
(p3) = —n*k? U e da +/ e dx} = —n’k*.
—oo 0

2.38 A particle of mass m in the one-dimensional energy well V(z) = 0 for
0 < 2 < L and oo otherwise is in a state whose wave function is given
by ¥(z) = Na(L —x) where N is the normalization constant. Determine
(E) in this state.

The normalization condition gives

N2L5
30

L
1:N2/ 2?(L —z)?dx =
0
That is, N = /30/L5. Next,

(E)

/OL V* Hyp da

L h2 d2
/0 v (‘%w) vd

h2 L
= —N2/ (xL—acz) dx
m 0
~ 5R?
 omL?
d 2 ih
2. h hat —(22) = = (ap,) — —.
39 Show that dt(w) m(xp) -
(x?) is given by (x / Y* 2z dz. Then
d *
St = / Ve ds
Using the Schrodinger equation for %—:{) and ;/Jt we get
d L R
E<$2> = (pQ;Z; +Vy )xzwdx

0 2
+%/_ b (p—w+vw> dz

x——/ Yrae?pieda .

i
2mh
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Expanding the first integral we obtain

G0 = g [0 Con® £ ) @
_ 27;h /_ T (—difepa + 20(~ih)?) da
= Zipy -1
2.40 Show that d—2<x2> = i( %)+ z<ch>.
dt? m?2 m

d 2 ih
have — (2%) = = (zp,) — —. Th
We have dt(w) m(mp) - en
d? 2 d
@(132) = —E@PH

- mdt/ O (ape) de

- m/_w a :cpzwdwm/_wwxpma da

Using the Schrédinger equation

a2, i ° 2 [,
S = m/ wxpzwdw—h Veepbis

3 _
g | vatvds / Wt ap, (V) d
i .
= — / V? [pa(Powpaty + xpinp) — apley] da
m?h J_
2i e
e R ) (—ihd—v> dz .
_ dx
Substituting F' = —dV/dz we get

dz2 i o 2
) = ml2h / v* (2paapiy) do+ —(zF)

= m2h/ Y (—ih)p2ep de + — (xF)

= 2+ aF).
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d
2.41 Show that — (p?) = (2Fp, + p. F).

dt

o0
By definition (p?) = / Y*p2epdr. Then
—00

d, 50 [T oY, /oo . 20U
q\Pe) = / g P dr Wwpxatdr

— 00

Using the Schrédinger equation we obtain

That is,

d, 5

2.42 Show that %(pma@ =

d 2 o 1 > pid)* * 2
1 [ 2
+.—/ V*p2 <p””w + Vq/z) dr .
ih J_ 2m

i

h

S G A

= 2 wnvnwars [ GRv)var]

oo
—00

— 25 [ U VVpadr — 5(in / Vs

. / * Fpathdr + / WP Fidr

= (2Fp, + p.F) .

L (2) + (2 F).

m

The expectation value of p,x is

Now

) = [ Z ¥ patp do
= —in /O; Y de + /Z Y rp, de

= —ih+/ V¥ xpLp de .
Sy = 5[ v
ETACCRU TS B St

/ o xpxwdx+[m¢ mpwadx.

— 00
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We have
5 OV v L O px
ot %1/)-1-‘/17&, —ih % = ¢ + Vy*.
Using these two equations for 9y /0t and d¢* /Ot we get
G = g [ vemvdes g [ Vet
ar Pzx) = omh P¥ TPz Ax n) . TPz AT
3 _— =
g [ vretvds =y [ e ve)a
_ * 2 _ i
— o [ venae- g [ vt
+/ Yy F dr .
Then
g( x)y = ;/001/1* (z qux——/ Yrapdydr + (xF)
dt Pz = Smh Py TPz p

= th/ ¢ peapi da + (aF)

- - / U dr+ (@F)

= )+ F).

d d 2
2.43 For a free particle show that E@i) =0 and E(xpm + ppx) = E(pi)

‘We have the result

d 1, d, o
gz Pe) = —(0%) + (@), 2 {pa) = (2Fps +poF) -
For a free particle F' = 0 and hence
d 1 d

E(pwx> = E<pi> ) E(pi) =0.

Consider [z, p;| = py — pzx = ih. From this we write

TPy — Do + P2k — Pex = iR
TPz + Pat — 2px = ih
TPz +pex = b4 2p.x .
Then
d d 2
3. x x 2_ L) = — 2 .
3 (WP Po) = 2 (po) = — (p)
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2.44

2.45

Schrodinger Equation and Wave Function B 25

¢1 and ¢ are the only eigenfunctions of a system belonging to the energy
eigenvalues Ey and —FEj respectively. In a measurement of the energy
of the system, (FE) is found to be Ey/2. Find the wave function of the
system.

The wave function of the system is ¢ = C1¢1 + Cay , C? +C35 = 1.
Further

(E) = C?E,+C2E,
= C?E, - C2?E,
= FE(CF-0C3) .

Since (E) = Ey/2 we get C; — C3 = 1/2. Solving C} + C3 = 1 and
C? —C2 =1/2 we get C; =+/3/2 and Cy = 1/2. Then

V3

¢=7¢1+%¢2~

The H of a charged particle in uniform electric and magnetic fields
1

is given by H = 2—(p—eA)2 —eEogk.k where A = By(—y,x,0)/2.
m

Both electric field E and magnetic field B are applied along the z-

d 1
direction. Applying Ehrenfest’s theorem, show that E(r) = (p — eA)

d
and a(p —eA) = eFEgk + %(p —eA) x V x A.
1
V x A is obtained as V x A = Bok. H is 2—(p —eA)? — eEy. Now,
m

d
consider E(m) We obtain

E(m) = [m Y x¢d$+[m¢ J;de

= —i/ Hw*xwdx—i—i/ Y rH dx
ih J_ ih J_

1
= o H).
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26 M Solutions to the Exercises in Quantum Mechanics I: The Fundamentals

Next, we find

[z, H]

Therefore,

Hence,

Next,

1
= x,%(p—eA)~(p—eA)+eEo
_ 2 1 242
= 5 [z, p2] + 5 [z, e A%]
1 1
—%[x,pfA]—%[x,6A~p]+[x,eE0]
- L [z, p2] — L(iheA ) — L(iheA )
2m VT 2m v 2m v
= fpm_ﬂeAz
m
1 [ih eA,
—E <_pm_ h m ) —_(pac_eAw)
d 1
S = (o —cA)
d2 d d d
@Em = (F)=gmgir)=—1(p-cA)
1
= Lip-eam)

We obtain with v =dr/d{, B=V x A

(F)

Hence,

dt

= eE+%(va—va>

eE+%[(p—eA)xB—Bx(p—eA)]

cE+ S[(p—eA) x V x A .
m

i(p—eA):(F>:eEOk—l—%(p—eA)XVxA.

2.46 A particle of mass m enclosed in a one-dimensional box of length L
such that 0 < x < L, has energy eigenfunctions ¢, (z) = Asin(nmra/L),
n =12, and E, = n?7%h?/(2mL?). At t = 0, the particle has the
wave function ¢(z) = Bsin(2nz/L) cos(mxz/L) where B is a constant.
(i) If the energy of the particle is measured at ¢ = 0, what are the
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2.47

Schrodinger Equation and Wave Function B 27

possible results of the measurement? (ii) What is the expectation value
of energy?

(i) The wave function can be written as a combination of eigenfunctions
as
T

2
Y = Bsin%cosf

~ Bl ™3
= B SIHL Sin I

B
5 (61 +63) -

That is, the system can have only two eigenstates ¢1 and ¢3 each with

probability B2/4. Further, (B2/4) + (B?/4) = 1 gives B = \/2. There-

fore,

_ L
V2

If the energy is measured then one may get the energy as FE; with the

probability 1/2 and Es with probability 1/2.

» (p1+ ¢3) .

(ii) We obtain

5m2h2

1
— 2 2 - — Q) = ————
<E>—CIE1+C3E3— 2(E1 + Es) L2

Given the normalized ground state wave function of hydrogen atom
100 = 1/(7ra§)1/2 e~ "/ find the expectation value of its z-coordinate.

We obtain

o] ™ 27 1
(z) = / / / —2e_27"/a0 zr? dr sin 0d0 de .
o Jo Jo Tag

Substituting z = rcos 0 we get

1 00 T 2w
(2) — / / / r3e21/0 sin § cos O dr df d¢
Tag Jo Jo Jo
1 o0
= —m cos 20|( /0 rle=2r/a0 g

= 0.
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28 B Solutions to the Exercises in Quantum Mechanics I: The Fundamentals

2.48

2.49

2.50

If Hon(z) = En¢n(x) find the expectation value of the Hamilto-
nian operator H in the normalized superposition state ¢(z,t) =

ZZOZO Cn¢n($) efiE,,Lt/h’

We obtain
(E) = (YH|p)
= D) CpCpelPurmEtn / ¢t Hey, da
n’ n -0
= > > C.CpeiEn Bt/ / O Enpp da
n’ n -0
= > > C.CpeEn Bt G
n’ n
= ) |CulEn .
n
Consider a system in a state 1) = (¢1 + ¢2)/v/2 where ¢, and ¢y are

orthonormal eigenfunctions with the eigenvalues Fy and Fs respectively.
What is the probability of finding the system in the energy 17 What
is (E)?

The probability of finding the system with energy F; is (1/v/2)% = 1/2.
Next

2

1 1 1
(B) =Y |ColPEn = B+ 5By = -

E, + E») .
2 2 2(1+2)

n=1

Consider a spherically symmetric potential energy function given by

V(ir) = 0, for 0 < r < a and oo for » > a. Given the solu-

ink k
tion ¥(r) = AT BT Ghere k = (2mE/h?)'/? satisfying the
T

r
Schrodinger equation, obtain the corresponding eigenvalues by applying
proper boundary conditions.

As r — 0, ¢ must be finite. The condition lim,_,g¥(r) = finite sets
< k-
B = 0. So ¥(r) = AT

sin ka = 0. That is, ka = nm,n = 1,2, - --. Hence, the energy eigenvalues
are given by

. At r = a we require ¢ = 0. This gives

R%k:  n?h%n?

2m  2ma?

En
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