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Schrödinger Equation

and Wave Function

2.1 Write the Schrödinger equation for a particle in a potential sinx.

The Schrödinger equation is

i�
∂ψ

∂t
= − �

2

2m

∂2ψ

∂x2
+ sinxψ .

2.2 For a particle carrying a charge q in a uniform time-dependent electric
field E(t) the force experienced by it is F = −∇(−qE(t) ·X). Write the
Schrödinger equation of the system.

The Schrödinger equation is

i�
∂ψ

∂t
= − �

2

2m
∇2ψ − (qE(t) ·X)ψ .

2.3 Write the Schrödinger equation for a charged particle moving in an
electromagnetic field with the Hamiltonian

H =
1

2m

(

p− q

c
A(X, t)

)2

+ qφ(X, t) .

Rewrite the Schrödinger equation for A = (Bz, 0, 0) and φ = −Ez.

The Schrödinger equation is

i�
∂ψ

∂t
=

1

2m

(

p− q

c
A
)2

ψ + qφψ

=
1

2m

(

−�
2∇2ψ +

q2

c2
A2ψ − p

(q

c
Aψ

)

− q

c
A · pψ

)

+ qφψ

=
1

2m

[

−�
2∇2ψ + 2i�

q

c
A · ∇ψ + i�

q

c
ψ∇ ·A+

q2

c2
A2ψ

]

+ qφψ .

7
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8 � Solutions to the Exercises in Quantum Mechanics I: The Fundamentals

For A = (Bz, 0, 0) and φ = −Ez we have

i�
∂ψ

∂t
=

1

2m

[

−�
2∇2ψ + 2i�

q

c
Bzψz +

q2

c2
B2z2ψ

]

− qEzψ .

2.4 What is the Schrödinger equation of a system of two particles of
masses m1 and m2 carrying charges q1 and q2 respectively with

H =
1

2m1
p21 +

1

2m2
p22 +

q1q2
r12

and r12 = |r1 − r2|?

The Schrödinger equation i�
∂ψ

∂t
= Hψ becomes

i�
∂ψ

∂t
= − �

2

2m1
∇2

1ψ − �
2

2m2
∇2

2ψ +
q1q2
r12

ψ ,

where

∇2
i =

∂2

∂x2
i

+
∂2

∂y2i
+

∂2

∂z2i
, i = 1, 2 .

2.5 Starting from the Schrödinger equation for ψ, obtain the equation for
ψ∗.

The Schrödinger equation for ψ is

i�
∂ψ

∂t
= − �

2

2m
∇2ψ + V (X, t)ψ .

Taking complex conjugate of the above equation we get

−i�
∂ψ∗

∂t
= − �

2

2m
∇2ψ∗ + V ∗(X, t)ψ∗ .

This is the Schrödinger equation for ψ∗.

2.6 If E1 and E2 are the eigenvalues and φ1 and φ2 are the eigenfunctions
of a Hamiltonian operator then find whether the energy corresponding
to the superposition state φ1 + φ2 is equal to E1 + E2 or not.

We have Hφ1 = E1φ1 and Hφ2 = E2φ2. Then

H (φ1 + φ2) = Hφ1 +Hφ2

= E1φ1 + E2φ2

�= (E1 + E2) (φ1 + φ2) .
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Schrödinger Equation and Wave Function � 9

2.7 Express the Schrödinger equation

[

− �
2

2m
∇2 + V (x, y, z)

]

ψ(x, y, z) =

Eψ(x, y, z) in the spherical polar coordinates defined by x = r sin θ cosφ,
y = r sin θ sinφ, z = r cos θ and in the parabolic coordinates defined by
ξ = r(1 − cos θ), η = r(1 + cos θ), φ = φ cos θ.

In spherical polar coordinates the Schrödinger equation is

− �
2

2m

[

1

r2
∂

∂r

(

r2
∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂φ2
+ V (r, θ, φ)

]

ψ(r, θ, φ) = Eψ(r, θ, φ) .

In the parabolic coordinates the Schrödinger equation is

− �
2

2m

[

4

ξ + η

{

∂

∂ξ

(

ξ
∂

∂ξ

)

+
∂

∂η

(

η
∂

∂η

)

+
1

ξη

∂2

∂φ2

}

+V (ξ, η, φ)

]

ψ = Eψ .

2.8 Find the condition under which both ψ(X, t) and ψ∗(X,−t) will be the
solutions of the same time-dependent Schrödinger equation.

The Schrödinger equations for ψ(X, t) and ψ∗(X,−t) are given by

i�
∂ψ

∂t
= − �

2

2m
∇2ψ + V (X, t)ψ ,

i�
∂ψ∗

∂t
= − �

2

2m
∇2ψ∗ + V ∗(X,−t)ψ

respectively. The above two equations are identical if V (X, t) =
V ∗(X,−t), that is if V is real and an even function of t.

2.9 What is the major difference between real and complex wave functions?

The probability current density J is given by

J =
�

2mi
[ψ∗∇ψ − ψ∇ψ∗] .

If ψ is real then J = 0. If ψ is complex then J need not be zero.

2.10 What is the difference between the wave function ψ1 = ei(kx−ωt) and
ψ2 = ei(k·X−ωt)?

ψ1 is a plane (probability)wave travelling along a one-dimensional line.
ψ2 is a three-dimensional (probability)wave.
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10 � Solutions to the Exercises in Quantum Mechanics I: The Fundamentals

2.11 Write the Hamiltonian of a photon.

For a photon H = E = mc2 = mcc = pc.

2.12 What is the physical meaning of �x� = 0?

ψ is symmetric or antisymmetric with respect to x = 0.

2.13 Write the operator forms of kinetic energy and angular momentum L =
r× p.

The operator form of kinetic energy mv2/2 is

(K.E.)op =
1

2
mv2 =

p2

2m
= − �

2

2m
∇2 .

For L = r× p we have with r = ix+ jy + kz

L = r× p =

∣

∣

∣

∣

∣

∣

i j k
x y z
px py pz

∣

∣

∣

∣

∣

∣

= i (ypz − zpy) + j (zpx − xpz) + k (xpy − ypx) .

The components of L are

Lx = i�

(

−y
∂

∂z
+ z

∂

∂y

)

= i�

(

z
∂

∂y
− y

∂

∂z

)

,

Ly = i�

(

−z
∂

∂x
+ x

∂

∂z

)

= i�

(

x
∂

∂z
− z

∂

∂x

)

,

Lz = i�

(

−x
∂

∂y
+ y

∂

∂x

)

= i�

(

y
∂

∂x
− x

∂

∂y

)

.

2.14 Consider the one-dimensional Schrödinger equation u(x) = − d

dx
lnψ(x).

Obtain the Schrödinger equation under the change of variable

u(x) = − d

dx
lnψ(x).

The general transformation is u = −ψx/ψ or ψx = −uψ. Then ψxx =
−uxψ − uψx. Now, the Schrödinger equation is rewritten as (with λ =
2mE/�2 and g = 2mV/�2)

−uxψ − uψx + (λ − g)ψ = 0 or − uxψ + u2ψ + (λ− g)ψ = 0 .

That is, ux − u2 − λ+ g = 0.
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Schrödinger Equation and Wave Function � 11

2.15 Find the conditions to be satisfied by the functions f and g such that
under the transformation ψ = f(x)F (g(x)) the Schrödinger equation
ψxx + (E − V )ψ = 0 can be written as

Fgg +Q(g)Fg +R(g)F (g) = 0 . (2.1)

Then show that

E − V = (g′)2
[

R− 1

2
Qg −

Q2

4

]

+

(

g′′

2g′

)′
−
(

g′′

2g′

)2

. (2.2)

In terms of f and F the Schrödinger equation is written as

fF ′′ + 2f ′F ′ + f ′′F + (E − V )fF = 0 , (2.3)

where prime denotes differentiation with respect to x. Since F is F (g(x))
we have

F ′ = Fgg
′ , F ′′ = Fgg(g

′)2 + Fgg
′′ . (2.4)

Then Eq. (2.3) becomes

Fgg +

(

2f ′

g′f
+

g′′

g′2

)

Fg +

[

f ′′

g′2f ′2 +
(E − V )

g′2

]

F = 0 . (2.5)

Comparison of Eqs. (2.1) and (2.5) gives

Q =
2f ′

g′f
+

g′′

g′2
, R =

f ′′

g′2f ′2 +
E − V

g′2
. (2.6)

The conditions on f and g are given by Eqs. (2.6). From Eqs. (2.6) we
obtain

f ′

f
=

g′Q

2
− g′′

2g′
(2.7a)

E − V = g′2R− f ′′

f
. (2.7b)

From (2.7a) we find f ′′/f and substituting it in (2.7b) we obtain

d

dx

(

f ′

f

)

=
f ′′

f
− f ′2

f2
. (2.8)

That is,

f ′′

f
=

d

dx

(

f ′

f

)

+
f ′2

f2

=
d

dx

(

g′Q

2
− g′′

2g′

)

+

(

g′Q

2
− g′′

2g′

)2

=
1

2
Qg −

(

g′′

2g′

)

+
g′2Q2

4
+

(

g′′

2g′

)2

. (2.9)

Substituting the above in Eq. (2.7b) we obtain the Eq. (2.2).
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12 � Solutions to the Exercises in Quantum Mechanics I: The Fundamentals

2.16 What are the effects of addition of a constant to a potential on the
time-independent Schrödinger equation and the energy levels?

The time-independent Schrödinger equation with the addition of a con-
stant α to a potential is given by

(

− �
2

2m
∇2 + V + α

)

ψn = Enψn .

This can be rewritten as
(

− �
2

2m
∇2 + V

)

ψn = (En − α)ψn = E�
nψn ,

where E�
n = En − α. Therefore ψn remains the same but the energy

eigenvalues of the new system are En − α.

2.17 Which of the following wave functions are admissible in quantum me-
chanics? State the reasons.

(a) e−x2

. (b) sechx. (c) e−x. (d) tanhx. (e) sinx, 0 < x < 2π. (f) sinx,

−∞ < x < ∞. (g)
√
e−x2 . (h) tanx. (i) secx. (j) xe−x2

. (k) 1 − x2,
−1 < x < 1.

The conditions to be satisfied by a wave function are: (i) ψ should be
normalizable. (ii) It should be single-valued. (iii) It must be finite at
every point. (iv) It and its first partial derivatives must be continuous.

The functions (a), (b), (e), (j) and (k) satisfy all the above conditions
and hence they are admissible wave functions (verify).

The functions (c), (d), (f), (h), (i) are nonnormalizable. The function
(g) is multivalued. Therefore, they are not admissible wave functions.

2.18 Normalize the wave function ψ = Neikx−x2/(2σ2).

From the normalization condition we obtain

1 =

∫ ∞

−∞
ψ∗ψ dx = N2σ

∫ ∞

−∞
e−y2

dy = N2σ
√
π .

Thus N = 1/ (σ
√
π )

1/2
.

2.19 Find the value of N for which the wave function ψ(x) = N for |x| < a
and 0 for |x| > a is normalized.

The normalization condition gives

1 =

∫ a

−a

ψ∗ψ dx = N2

∫ a

−a

dx = N2x|a−a

= 2aN2 .

Thus, N = 1/
√
2a .
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Schrödinger Equation and Wave Function � 13

2.20 Normalize the wave function ψ = e−|x| sinαx. It is given that
∫ ∞

0

e−x sinαxdx = α2/(1 + α2).

The normalization condition gives

1 = N2

∫ ∞

−∞
e−2|x| sin2 αxdx

= N2

∫ 0

−∞
e2x sin2 αxdx +N2

∫ ∞

0

e−2x sin2 αxdx

= 2N2

∫ ∞

0

e−2x sin2 αxdx

= −N2

2
e−2x |∞0 − N2

2

∫ ∞

0

e−x cosαxdx

=
N2

2
− N2

2

[

−e−x cosαx |∞0 − α

∫ ∞

0

e−x sinαxdx

]

=
N2

2
− N2

2

[

1− α3

1 + α2

]

=
N2α3

2(1 + α2)
.

That is, N =
√

2(1 + α2)/α3 .

2.21 A particle of mass m moves in a one-dimensional box of length L with
origin as the centre. If the wave function of this particle is ψ(x) =
Nx(1− x2) for |x| < L/2 and 0 otherwise find the factor N .

N can be determined from normalization condition. We obtain

1 = N2

∫ L/2

−L/2

x2
(

1− x2
)2

dx

= N2

∫ L/2

−L/2

(

x2 − 2x4 + x6
)

dx

= N2

[

L3

12
− L5

160
+

L7

448

]

Thus,

N =

[

L3

12
− L5

160
+

L7

448

]−1/2

.

If L is very small then N ≈
√

12/L3.
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14 � Solutions to the Exercises in Quantum Mechanics I: The Fundamentals

2.22 A quantum mechanical particle moving in one-dimension has the wave
function ψ(x) = cxe−|x|/b, −∞ < x < ∞ where c and b are constants
(b > 0). Find the probability that the position of the particle lies in the
region −∞ < x ≤ b.

First, we normalize the wave function. We obtain

1 =

∫ ∞

−∞
ψ∗ψ dx

= c2
∫ ∞

−∞
x2e−2|x|/b dx

= c2
∫ 0

−∞
x2e2x/b dx+ c2

∫ ∞

0

x2e−2x/b dx

= 2c2
∫ ∞

0

x2e−2x/b dx .

Substituting 2x/b = y in the integral, we get

1 =
b3c2

4

∫ ∞

0

y2e−y dy .

Integrating by parts we get

1 =
b3c2

2

∫ ∞

0

ye−y dy =
b3c2

2

∫ ∞

0

e−y dy =
b3c2

2
.

That is c2 = 2/b3 or c =
√

2/b3. The probability P (−∞ < x ≤ b) is

P =

∫ b

−∞
ψ∗ψ dx

=
2

b3

[

∫ 0

−∞
x2e2|x|/b dx+

∫ b

0

x2e−2x/b dx

]

=
2

b3
b3

8

[

−
∫ 0

∞
y2e−y dy +

∫ b

0

y2e−y dy

]

=
1

4

[

∫ ∞

0

y2e−y dy +

∫ b

0

y2e−y dy

]

Integrating by parts we get

P = 1− e−b

4

(

b2 + 2b+ 2
)

.
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Schrödinger Equation and Wave Function � 15

2.23 What is the probability current density corresponding to ψ(x) = Ae−αx

where A and α are constants?

The probability current density is given by

J =
�

2mi
[ψ∗∇ψ − ψ∇ψ∗] .

Since the given ψ is real, ψ∗ = ψ,

J =
�

2mi
[ψ∇ψ − ψ∇ψ] = 0 .

2.24 A free particle in one-dimension is in a state described by ψ =
A ei(pxx−Et)/� + B e−i(pxx+Et)/� where px and E are constants. Find
the probability current density.

J is given by

J =
�

m
Im(ψ∗∇ψ)

=
�

m
Im

{[

A∗e−i(pxx−Et)/� +B∗ei(pxx+Et)/�
]

× ipx
�

[

Aei(pxx−Et)/� +Be−i(pxx+Et)/�
]

}

=
px
m

[

|A|2 − |B|2
]

.

2.25 If the wave function of a particle at t = 0 is ψ(x, 0) = Ne−ikx−(x2/2a2)

calculate the probability density and current density.

First, we normalize the given wave function. We obtain

1 =

∫ ∞

−∞
ψ∗ψ dx = 2N2a

∫ ∞

0

e−y2

dy = N2a
√
π .

That is N = (1/(a2π))1/4. The probability density is obtained as

P (x) =
1

a
√
π
e−x2/a2

.

Then the current density is determined as

J(x) =
�

2mi

(

ψ∗ dψ

dx
− ψ

dψ∗

dx

)

=
�k

m

1

a
√
π
e−x2/a2

=
�k

m
P (x) .
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16 � Solutions to the Exercises in Quantum Mechanics I: The Fundamentals

2.26 For the Gaussian wave function ψ(x) =

(

1

σ
√
π

)1/2

e−x2/2σ2

calculate

the probability current density.

The probability current density is given by

J =
�

2mi

(

ψ∗ dψ

dx
− ψ

dψ∗

dx

)

.

For any real ψ

ψ∗ dψ

dx
− ψ

dψ∗

dx
= 0 .

Then J = 0. Therefore, for the real Gaussian function J = 0.

2.27 Verify whether the wave function ψ = Neikx−x2/(2a2) satisfies the conti-
nuity equation or not.

The continuity equation is given by
∂ρ

∂t
+

dJ

dx
= 0. For the given function

ρ = ψ∗ψ = N2e−x2/a2

and
∂ρ

∂t
= 0. Further

J =
�

m
Im

(

ψ∗ dψ

dx

)

=
�

m
Im

(

N2e−x2/a2 (

ik − x/a2
)

)

=
N2

�k

m
e−x2/a2

.

Then

dJ

dx
= −2

N2
�k

ma2
xe−x2/a2

.

Now the continuity equation becomes xe−x2/a2

= 0 which is true only if
x = 0. Hence, the given ψ does not satisfy the continuity equation.

2.28 The wave function of a linear harmonic oscillator with potential V =
mω2x2/2 is ψ = xe−mωx2/(2�). Find its energy.

The Schrödinger equation for a potential V is

ψxx +
2m

�2
(E − V )ψ = 0 .

For the given potential and ψ the above equation becomes

−3mω

�
x+

m2ω2

�2
x3 +

2mE

�2
x− m2ω2

�2
x3 = 0 .

From the above equation we get E = 3�ω/2.
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Schrödinger Equation and Wave Function � 17

2.29 If ψ =
√

1/L cos(πx/(2L)) for the system confined to the potential
V (x) = 0 for |x| < L and ∞ for |x| > L then calculate E.

The Schrödinger equation for the given system is

ψxx +
2m

�2
Eψ = 0 .

Then

Eψ = − �
2

2m
ψxx =

�
2

2m
√
L

( π

2L

)2

cos
πx

2L
=

�
2π2

8mL2
ψ .

Thus. E = �
2π2/(8mL2).

2.30 The wave function of a particle confined to a box of length L is
√

2/L sin(πx/L) in the region 0 < x < L and zero everywhere else. Cal-
culate the probability of finding the particle in the region 0 < x ≤ L/2.

We obtain

P (0 < x ≤ L/2) =

∫ L/2

0

ψ∗ψ dx

=
2

L

∫ L/2

0

sin2
πx

L
dx

=
1

L

∫ L/2

0

(

1− cos

(

2πx

L

))

dx =
1

2
.

2.31 Write the law of conservation of energy H = T + V in terms of expec-
tation values.

We write �H� = �T �+ �V �.
2.32 Are the wave functions

ψ1 =

(

1

πa30

)1/2

e−r/a0 and ψ2 =

(

1

32πa30

)1/2 (

2− r

a0

)

e−r/(2a0)

of the electron in hydrogen atom orthogonal?

The orthogonality integral is calculated as
∫ ∞

0

ψ∗
1ψ2 dτ ∝

∫ ∞

0

(

2− r

a0

)

r2e−3r/2a0 dr

∝ 6

∫ ∞

0

y2e−y dy − 2

∫ ∞

0

y3e−y dy

∝ 6

∫ ∞

0

y2e−y dy − 6

∫ ∞

0

y2e−y dy

= 0 .

Since

∫ ∞

0

ψ∗
1ψ2dτ = 0, the given two wave functions are orthogonal.
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18 � Solutions to the Exercises in Quantum Mechanics I: The Fundamentals

2.33 Find the potential corresponding to the following wave functions:

(a) ψ =
1

π1/4
e−x2/2, E = �ω/2.

(b) ψ = A sin(πx/(2L)) for |x| < L and 0 for |x| > L, E = �
2π2/(8mL2).

(c) ψ = αxe−βxeiE/�.

(d) ψ = (mV0/�)e
−kx for x > 0, (mV0/�)e

kx for x < 0 and E =
−mV0/(2�

2), k2 = mV0/�
2.

(a) The eigenvalue equation Hψ = Eψ is

−�
2

2m

d2ψ

dx2
+ V ψ = Eψ or V ψ =

�
2

2m
ψxx + Eψ .

Substituting the given ψ and E in the above equation we get

V ψ =
�
2

2m

d

dx
(−x)ψ + Eψ =

�
2

2m

(

−ψ + x2ψ
)

+ Eψ .

Then

V =
�
2

2m

(

−1 + x2
)

+ E =
�
2

2m

(

x2 − 1
)

+
�ω

2
.

(b) For the given wave function we obtain

V ψ =
�
2

2m

d

dx

π

2L
A cos

πx

2L
+ Eψ

= − �
2π2

8mL2
ψ + Eψ

= −Eψ + Eψ

= 0 .

Therefore, V (x) = 0 for |x| < L and ∞ for |x| > L.

(c) Using the given wave function we get

V ψ =
�
2

2m
αeiE/� d

dx

(

e−βx − βx2e−βx
)

+ Eψ

=
�
2

2m
αeiE/�

(

−βe−βx − 2βxe−βx + β2x2e−βx
)

+ Eψ

or

V αxe−βxeiE/� =
�
2

2m
αeiE/�

(

−βe−βx − 2βxe−βx + β2x2e−βx
)

+ Eψ .
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That is,

V =
�
2

2m

(

−β

x
− 2β + β2x

)

+ E .

(d) For the given wave function for x > 0

V ψ =
�
2

2m

d

dx
(−kψ) + Eψ =

�
2

2m
k2ψ + Eψ .

Then V =
k2

2

(

�
2

m
− 1

)

. Similarly, for x < 0 we obtain V =

k2

2

(

�
2

m
− 1

)

.

2.34 A particle of mass m is confined in the infinite square-well potential V =
0 for 0 < x ≤ L and V = ∞ otherwise. It has the normalized stationary
state eigenfunctions φn(x) and eigenvalues En = n2

�
2π2/(2mL2). Its

wave function at time t = 0 is given by ψ(x, 0) = (φ1(x) + φ2(x))/
√
2 .

What is the smallest positive time τ for which ψ(x, t) will be orthogonal
to ψ(x, 0)?

The wave function ψ(x, t) is

ψ(x, t) =
1√
2

(

φ1e
−iE1t/� + φ2e

−iE2t/�
)

.

At t = τ the condition for ψ(x, 0) and ψ(x, t) to be orthogonal is
∫ L

0

ψ∗(x, τ)ψ(x, 0) dx = 0 .

We get
∫ L

0

(

φ∗
1e

iE1τ/� + φ∗
2e

iE2τ/�
)

(φ1 + φ2) dx = 0 .

Since
∫ L

0 φmφn dx = δmn we get eiE1τ/� + eiE2τ/� = 0. That is

cos
E1τ

�
+ i sin

E1τ

�
+ cos

E2τ

�
+ i sin

E2τ

�
= 0 .

Equating the real and imaginary parts to zero separately we get

cos
E1τ

�
= − cos

E2τ

�
, sin

E1τ

�
= − sin

E2τ

�
.

We rewrite the above conditions as

cos
E1τ

�
= cos

π + E2τ

�
, sin

E1τ

�
= sin

π + E2τ

�
.

Thus, τ = �π/(E1 − E2). Since E2 > E1 we write τ = �π/(E2 − E1).

K24365_SM_Cover.indd   33 13/11/14   6:56 PM



20 � Solutions to the Exercises in Quantum Mechanics I: The Fundamentals

2.35 Show that �xpx + pxx� is real.

Consider �pxx�. We obtain

�pxx� =

∫ ∞

−∞
ψ∗pxxψ dx

=

∫ ∞

−∞
(p†xψ)

∗xψ dx

=

(
∫ ∞

−∞
pxψx

∗ψ∗ dx

)∗

=

(∫ ∞

−∞
ψ∗xpxψ dx

)∗

= �xpx�∗ .

Now, �xpx + pxx� = �xpx� + �pxx� = �xpx� + �xpx�∗ = 2Re�xpx�. Thus
�xpx + pxx� is real.

2.36 Show that �An� = �A�n in its eigenstates.

Let Aψ = αψ. Then we obtain

�An� =

∫ ∞

−∞
ψ∗Anψ dτ

=

∫ ∞

−∞
ψ∗An−1Aψ dτ

= α

∫ ∞

−∞
ψ∗An−1ψ dτ

= αn

∫ ∞

−∞
ψ∗ψ dτ

= αn .

We find �A� =
∫ ∞

−∞
ψ∗Aψ dτ = α

∫ ∞

−∞
ψ∗ψ dτ = α. Hence, �An� = αn =

�A�n.

2.37 Calculate �p2x� for ψ =
√
ke−k|x|.

We obtain

�p2x� =
∫ ∞

−∞
ψ∗p2xψ dx = −�

2

∫ ∞

−∞
e−k|x| d2

dx2
e−k|x| dx .

The above equation can be rewritten as

�p2x� = −�
2k

[∫ 0

−∞
ekx

d2

dx2
ekx dx+

∫ ∞

0

e−kx d2

dx2
e−kx dx

]

.
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Then we obtain

�p2x� = −�
2k3

[∫ 0

−∞
e2kx dx+

∫ ∞

0

e−2kx dx

]

= −�
2k2 .

2.38 A particle of mass m in the one-dimensional energy well V (x) = 0 for
0 ≤ x ≤ L and ∞ otherwise is in a state whose wave function is given
by ψ(x) = Nx(L−x) where N is the normalization constant. Determine
�E� in this state.

The normalization condition gives

1 = N2

∫ L

0

x2(L− x)2 dx =
N2L5

30
.

That is, N =
√

30/L5. Next,

�E� =

∫ L

0

ψ∗Hψ dx

=

∫ L

0

ψ

(

− �
2

2m

d2

dx2

)

ψ dx

=
�
2

m
N2

∫ L

0

(

xL− x2
)

dx

=
5�2

mL2
.

2.39 Show that
d

dt
�x2� = 2

m
�xpx� −

i�

m
.

�x2� is given by �x2� =
∫ ∞

−∞
ψ∗x2ψ dx. Then

d

dt
�x2� =

d

dt

∫ ∞

−∞
ψ∗x2ψ dx

=

∫ ∞

−∞

∂ψ∗

∂t
x2ψ dx+

∫ ∞

−∞
ψ∗x2 ∂ψ

∂t
dx .

Using the Schrödinger equation for
∂ψ

∂t
and

∂ψ∗

∂t
we get

d

dt
�x2� = − 1

i�

∫ ∞

−∞

(

p2xψ
∗

2m
+ V ψ∗

)

x2ψdx

+
1

i�

∫ ∞

−∞
ψ∗x2

(

p2x
2m

ψ + V ψ

)

dx

=
i

2m�

∫ ∞

−∞
ψ∗p2x

(

x2ψ
)

dx− i

2m�

∫ ∞

−∞
ψ∗x2p2xψ dx .
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Expanding the first integral we obtain

d

dt
�x2� =

i

2m�

∫ ∞

−∞
ψ∗ (2pψpxx

2 + ψp2x2
)

dx

=
i

2m�

∫ ∞

−∞
ψ∗ (−4i�xpxψ + 2ψ(−i�)2

)

dx

=
2

m
�xpx� −

i�

m
.

2.40 Show that
d2

dt2
�x2� = 2

m2
�p2x�+

2

m
�xF �.

We have
d

dt
�x2� = 2

m
�xpx� −

i�

m
. Then

d2

dt2
�x2� =

2

m

d

dt
�xpx�

=
2

m

d

dt

∫ ∞

−∞
ψ∗(xpx)ψ dx

=
2

m

∫ ∞

−∞

∂ψ∗

∂t
xpxψ dx+

2

m

∫ ∞

−∞
ψ∗xpx

∂ψ

∂t
dx .

Using the Schrödinger equation

d2

dt2
�x2� =

i

m2�

∫ ∞

−∞
p2xψ

∗xpxψ dx+
2i

m�

∫ ∞

−∞
V ψ∗xpxψ dx

− i

m2�

∫ ∞

−∞
ψ∗xp3xψ dx− 2i

m�

∫ ∞

−∞
ψ∗xpx(V ψ) dx

=
i

m2�

∫ ∞

−∞
ψ2

[

px(pxxpxψ + xp2xψ)− xp3xψ
]

dx

− 2i

m�

∫ ∞

−∞
ψ∗xψ

(

−i�
dV

dx

)

dx .

Substituting F = −dV/dx we get

d2

dt2
�x2� =

i

m2�

∫ ∞

−∞
ψ∗ (2pxxp

2
xψ

)

dx+
2

m
�xF �

=
2i

m2�

∫ ∞

−∞
ψ∗(−i�)p2xψ dx+

2

m
�xF �

=
2

m2
�p2x�+

2

m
�xF � .
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2.41 Show that
d

dt
�p2x� = �2Fpx + pxF �.

By definition �p2x� =
∫ ∞

−∞
ψ∗p2xψdτ . Then

d

dt
�p2x� =

∫ ∞

−∞

∂ψ∗

∂t
p2xψ dτ +

∫ ∞

−∞
ψ∗p2x

∂ψ

∂t
dτ .

Using the Schrödinger equation we obtain

d

dt
�p2x� = − 1

i�

∫ ∞

−∞

(

p2xψ
∗

2m
+ V ψ∗

)

p2xψ dτ

+
1

i�

∫ ∞

−∞
ψ∗p2x

(

p2xψ

2m
+ V ψ

)

dτ .

That is,

d

dt
�p2x� =

i

�

∫ ∞

−∞
V ψ∗p2xψ dτ − i

�

∫ ∞

−∞
ψ∗p2x (V ψ) dτ

= − i

�

[

2

∫ ∞

−∞
ψ∗pxV pxψ dτ +

∫ ∞

−∞
ψ∗ (p2xV

)

ψdτ

]

= −2
i

�
(−i�)

∫ ∞

−∞
ψ∗∇V pxψ dτ − i

�
(−i�)

∫ ∞

−∞
ψ∗(px∇V )ψ dτ

= 2

∫ ∞

−∞
ψ∗Fpxψ dτ +

∫ ∞

−∞
ψ∗pxFψdτ

= �2Fpx + pxF � .

2.42 Show that
d

dt
�pxx� =

1

m
�p2x�+ �xF �.

The expectation value of pxx is

�pxx� =

∫ ∞

−∞
ψ∗pxxψ dx

= −i�

∫ ∞

−∞
ψ∗ψ dx+

∫ ∞

−∞
ψ∗xpxψ dx

= −i�+

∫ ∞

−∞
ψ∗xpxψ dx .

Now

d

dt
�pxx� =

d

dt

∫ ∞

−∞
ψ∗xpxψ dx

=

∫ ∞

−∞

∂ψ∗

∂t
xpxψ dx+

∫ ∞

−∞
ψ∗xpx

∂ψ

∂t
dx .
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We have

i�
∂ψ

∂t
=

p2x
2m

ψ + V ψ , −i�
∂ψ∗

∂t
=

p2x
2m

ψ∗ + V ψ∗ .

Using these two equations for ∂ψ/∂t and ∂ψ∗/∂t we get

d

dt
�pxx� =

i

2m�

∫ ∞

−∞
p2xψ

∗xpxψ dx+
i

�

∫ ∞

−∞
V ψ∗xpxψ dx

− i

2m�

∫ ∞

−∞
ψ∗xp3xψ dx− i

�

∫ ∞

−∞
ψ∗xpx(V ψ) dx

=
i

2m�

∫ ∞

−∞
ψ∗p2x(xpxψ) dx− i

2m�

∫ ∞

−∞
ψ∗xp3xψ dx

+

∫ ∞

−∞
ψ∗xψF dx .

Then

d

dt
�pxx� =

i

2m�

∫ ∞

−∞
ψ∗p2x(xpxψ) dx− i

2m�

∫ ∞

−∞
ψ∗xp3xψ dx+ �xF �

=
i

2m�

∫ ∞

−∞
ψ∗pxxp

2
xψ dx+ �xF �

=
1

m

∫ ∞

−∞
ψ∗p2xψ dx+ �xF �

=
1

m
�p2x�+ �xF � .

2.43 For a free particle show that
d

dt
�p2x� = 0 and

d

dt
�xpx + pxx� =

2

m
�p2x�.

We have the result

d

dt
�pxx� =

1

m
�p2x�+ �xF � , d

dt
�p2x� = �2Fpx + pxF � .

For a free particle F = 0 and hence

d

dt
�pxx� =

1

m
�p2x� ,

d

dt
�p2x� = 0 .

Consider [x, px] = xpx − pxx = i�. From this we write

xpx − pxx+ pxx− pxx = i�

xpx + pxx− 2pxx = i�

xpx + pxx = i�+ 2pxx .

Then

d

dt
�xpx + pxx� = 2

d

dt
�pxx� =

2

m
�p2x� .
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2.44 φ1 and φ2 are the only eigenfunctions of a system belonging to the energy
eigenvalues E0 and −E0 respectively. In a measurement of the energy
of the system, �E� is found to be E0/2. Find the wave function of the
system.

The wave function of the system is ψ = C1φ1 + C2φ2 , C2
1 + C2

2 = 1.
Further

�E� = C2
1E1 + C2

2E2

= C2
1E0 − C2

2E0

= E0

(

C2
1 − C2

2

)

.

Since �E� = E0/2 we get C2
1 − C2

2 = 1/2. Solving C2
1 + C2

2 = 1 and
C2

1 − C2
2 = 1/2 we get C1 =

√
3/2 and C2 = 1/2. Then

ψ =

√
3

2
φ1 +

1

2
φ2 .

2.45 The H of a charged particle in uniform electric and magnetic fields

is given by H =
1

2m
(p− eA)2 − eE0k.k where A = B0(−y, x, 0)/2.

Both electric field E and magnetic field B are applied along the z-

direction. Applying Ehrenfest’s theorem, show that
d

dt
�r� = 1

m
�p− eA�

and
d

dt
�p− eA� = eE0k+

e

m
�p− eA� × ∇×A.

∇ × A is obtained as ∇ × A = B0k. H is
1

2m
(p− eA)2 − eE0. Now,

consider
d

dt
�x�. We obtain

d

dt
�x� =

∫ ∞

−∞

∂ψ∗

∂t
xψ dx+

∫ ∞

−∞
ψ∗x

∂ψ

∂t
dx

= − 1

i�

∫ ∞

−∞
Hψ∗xψ dx+

1

i�

∫ ∞

−∞
ψ∗xHψ dx

=
1

i�
�[x,H ]� .
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Next, we find

[x,H ] =

[

x,
1

2m
(p− eA) · (p− eA) + eE0

]

=
1

2m

[

x, p2x
]

+
1

2m

[

x, e2A2
]

− 1

2m
[x,p · eA]− 1

2m
[x, eA · p] + [x, eE0]

=
1

2m

[

x, p2x
]

− 1

2m
(i�eAx)−

1

2m
(i�eAx)

=
i�

m
px − i�

m
eAx .

Therefore,

d

dt
�x� = 1

i�

(

i�

m
px − i�

eAx

m

)

=
1

m
(px − eAx) .

Hence,

d

dt
�r� = 1

m
�p− eA� .

Next,

d2

dt2
�r� = �F� = d

dt
m

d

dt
�r� = d

dt
�p− eA�

=
1

i�
�[p− eA, H ]�

We obtain with v = dr/dt, B = ∇×A

�F� = eE+
e

2m
�v ×B−B× v�

= eE+
e

2m
[(p− eA)×B−B× (p− eA)]

= eE+
e

m
[(p− eA)×∇×A] .

Hence,

d

dt
�p− eA� = �F� = eE0k+

e

m
(p− eA)×∇×A .

2.46 A particle of mass m enclosed in a one-dimensional box of length L
such that 0 < x < L, has energy eigenfunctions φn(x) = A sin(nπx/L),
n = 1, 2, · · · and En = n2π2

�
2/(2mL2). At t = 0, the particle has the

wave function ψ(x) = B sin(2πx/L) cos(πx/L) where B is a constant.
(i) If the energy of the particle is measured at t = 0, what are the
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possible results of the measurement? (ii) What is the expectation value
of energy?

(i) The wave function can be written as a combination of eigenfunctions
as

ψ = B sin
2πx

L
cos

πx

L

=
B

2

(

sin
πx

L
+ sin

3πx

L

)

=
B

2
(φ1 + φ3) .

That is, the system can have only two eigenstates φ1 and φ3 each with
probability B2/4. Further, (B2/4) + (B2/4) = 1 gives B =

√
2. There-

fore,

ψ =
1√
2
(φ1 + φ3) .

If the energy is measured then one may get the energy as E1 with the
probability 1/2 and E3 with probability 1/2.

(ii) We obtain

�E� = C2
1E1 + C2

3E3 =
1

2
(E1 + E3) =

5π2
�
2

2mL2
.

2.47 Given the normalized ground state wave function of hydrogen atom
ψ100 = 1/(πa30)

1/2 e−r/a0 find the expectation value of its z-coordinate.

We obtain

�z� =
∫ ∞

0

∫ π

0

∫ 2π

0

1

πa20
e−2r/a0zr2 dr sin θdθ dφ .

Substituting z = r cos θ we get

�z� =
1

πa30

∫ ∞

0

∫ π

0

∫ 2π

0

r3e−2r/a0 sin θ cos θ dr dθ dφ

= − 1

2a30
cos 2θ|π0

∫ ∞

0

r3e−2r/a0 dr

= 0 .
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2.48 If Hφn(x) = Enφn(x) find the expectation value of the Hamilto-
nian operator H in the normalized superposition state ψ(x, t) =
∑∞

n=0 Cnφn(x) e
−iEnt/�.

We obtain

〈E〉 = 〈ψ|H |ψ〉

=
∑

n′

∑

n

C∗
n′Cne

i(En′−En)t/�

∫ ∞

−∞
φ∗
n′Hφn dx

=
∑

n′

∑

n

CnC
∗
n′ei(E

′

n−En)t/�

∫ ∞

−∞
φ∗
n′Enφn dx

=
∑

n′

∑

n

CnC
∗
n′ei(E

′

n−En)t/�Enδnn′

=
∑

n

|Cn|2En .

2.49 Consider a system in a state ψ = (φ1 + φ2)/
√
2 where φ1 and φ2 are

orthonormal eigenfunctions with the eigenvalues E1 and E2 respectively.
What is the probability of finding the system in the energy E1? What
is 〈E〉?

The probability of finding the system with energy E1 is (1/
√
2)2 = 1/2.

Next

〈E〉 =
2

∑

n=1

|Cn|2En =
1

2
E1 +

1

2
E2 =

1

2
(E1 + E2) .

2.50 Consider a spherically symmetric potential energy function given by
V (r) = 0, for 0 < r < a and ∞ for r > a. Given the solu-

tion ψ(r) = A
sin kr

r
+B

cos kr

r
where k = (2mE/�2)1/2 satisfying the

Schrödinger equation, obtain the corresponding eigenvalues by applying
proper boundary conditions.

As r → 0, ψ must be finite. The condition limr→0 ψ(r) = finite sets

B = 0. So ψ(r) = A
sin kr

r
. At r = a we require ψ = 0. This gives

sinka = 0. That is, ka = nπ, n = 1, 2, · · · . Hence, the energy eigenvalues
are given by

En =
�
2k2n
2m

=
n2

�
2π2

2ma2
.
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