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Chapter 2 

 

Homework 2.1 

Consider a one-dimensional harmonic oscillator of mass, m, and spring constant of k that follows 

Hooke's law, F kx= − , in an isolated system (E = const.). Then the Newton's second law becomes 

the second-order ordinary differential equation as: 

( ) ( )ka t x t
m

= −  

Let us assume that the spring is fixed at one side and is ideal with zero mass. Given oscillator 

frequency of 1/2( ) 1k mω = =   and initial conditions of 0 5x = and 0 0v = , find and discuss the 

following: 

• Analytical solution for ball positions with time 
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• Numerical solution for ball positions with time by taking the first two terms in the Taylor 

series expansion (the first-order Euler method) with t∆ = 0.2 for 10 timesteps 

• Compare the two methods above on a position-time plot and discuss what will happen if 

the numerical calculation proceeds further for more timesteps and how to improve its 

accuracy 

• Write down the potential expression for the system 

 

Solution 2.1 

Model 

 

 

An ideal ball-spring system in one dimension. 

 

Analytical solution: 

F kx = ma= − , 0 kx = ma= − at equilibrium 

This second-order differential equation has the general solutions as: 

0 0( ) cos( ) sin( ) 5sin( )v t v t x t tω ω ω= − = −  

0
0( ) cos( ) sin( ) 5cos( )vx t x t t tω ω

ω
= + =  

 

x 
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Numerical solution: 

( ) (0) (0)v t t v a t+ ∆ = + ∆ , ….. 

( ) (0) (0)x t t x v t+ ∆ = + ∆ , ….. 

kx = ma− , 1k m =  → a = x−  

 

Numerical calculation for one-dimensional harmonic oscillator 

t  t∆  x a = x−  v 

0.0 - x0 = 5 a0 = -5 v0 = 0 

0.2 0.2 x1 = x0 + v0∆t 
= 5 + 0 = 5 a1 = -5 v1 = v0 + a0∆t 

= 0 - 1 = -1 

0.4 0.2 x2 = x1 + v1∆t 
= 5 - 0.2 = 4.8 a2 = -4.8 v2 = v1 + a1∆t 

= -1 - 1 = -2 

0.6 0.2 x3 = x2 + v2∆t 
= 4.8 - 0.4 = 4.4 a3 = -4.4 v3 = v2 + a2∆t 

= -2 - 0.96 = -2.96 

0.8 0.2 x4 = x3 + v3∆t 
= 4.4 - 0.592 = 3.808 a4 = -3.808 v4 = v3 + a3∆t 

= -2.96 - 0.88 = -3.84 

1.0 0.2 x5 = x4 + v4∆t 
= 3.808 - 3.84(0.2) = 3.04 a5 = -3.04 v5 = v4 + a4∆t 

= -3.84 - 3.808(0.2)= -4.6016 

1.2 0.2 x6 = x5 + v5∆t 
= 3.04 - 4.6016(0.2) = 2.12 a6 = -2.12 v6 = v5 + a5∆t 

= -4.6016 - 3.04(0.2)= -5.2096 

1.4 0.2 
x7 = x6 + v6∆t 

=2.11968 - 5.2096(0.2) 
= 1.07776 

a7 = -1.07776 
v7 = v6 + a6∆t 

= -5.2096 - 1.07776(0.2) 
=-5.63354 

1.6 0.2 
x8 = x7 + v7∆t 

= =1.07776 - 5.63354(0.2) 
= -0.04895 

a8 = 0.04895 
v8 = v7 + a7∆t 

= -5.63354 - 1.07776(0.2) 
= -5.84909 

1.8 0.2 
x9 = x8 + v8∆t 

=-0.04895 - 5.84909(0.2) 
=-1.21876 

a9 = 1.21876 
v9 = v8 + a8∆t 

= -5.84909 + 0.04895(0.2) 
= -5.8393 

2.0 0.2 
x10= x9 + v9∆t 

= -1.21876 - 5.8393(0.2) 
= -2.38662 

a10 = 2.38662 
v10 = v9 + a9∆t 

= -5.8393 + 1.21876(0.2) 
= -5.59555 
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Comparison between the analytical and the numerical solutions 

for a one-dimensional harmonic oscillator. 

 

Comparison 

As the numerical calculation proceeds further for more timesteps, errors due to the truncation in 

the Taylor series expansion will accumulate (always overshoot the analytical curve since we are 

taking the slope on the curve). To improve accuracy, higher-order terms in Taylor series expansion 

should be included for the numerical calculation and timestep should be decreased. Of course, 

these measures will require more computation time. This is a simple demonstration of how the 

numerical integration works in practice. Better algorithms such as the velocity Verlet, the Gear, etc. 

can provide values very close to the exact analytical results. 

 

Potential expression 

F kx= −  

21
2

U Fdx kxdx kx= − = − − =∫ ∫ : Parabolic curve 
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Homework 2.2 

A typical potential curve for most materials looks like the one in Figure 2.5. Referring the curve, 

explain why most materials expand with increasing temperature. 

 

Solution 2.2 

Thermal expansion takes place because the potential curve with lattice constants is asymmetric. 

When atoms are thermally agitated and vibrate from their equilibrium positions, they face stronger 

repulsive force closer to each other (to the left in Figure 2.5) because of the Pauli Exclusion 

Principle. Thus they vibrate less toward left and more toward right and atomic mean positions will 

shift to right causing thermal expansion. 

 

Homework 2.3 

If we increase the average velocities of atoms in a system by two times, by how many times the 

corresponding temperature will increase in a MD run? 

 

Solution 2.3 

1 2'2new old old
Tv v v
T

 = =  
 

,  ' 4T T∴ =  

 

Homework 2.4 

Predict the positions of the first peak in a diagram of the radial distribution function obtained after 

a MD run for a simple cubic solid and an FCC solid. 

 

 



 

 6  

Solution 2.4 

A simple cubic solid will make a peak at equilibrium lattice parameter, 0a , by 6 neighboring atoms. 

An FCC solid will make a peak at 02 2a  by 12 neighboring atoms. 

 

Homework 2.5 

Draw the general features of the mean square displacement (MSD) function with simulation time 

when a crystalline solid is melted and becomes a liquid during a MD run and explain its behavior. 

 

Solution 2.5 

The following figure schematically shows the general feature of MSD during melting of a solid. At 

temperature lower than the melting point, the MSD fluctuates slightly but remains at very lower 

values. When temperature is increased higher than the melting point, melting occurs and the MSD 

linearly increases with time. Note that atoms in liquid phase no longer stay on their lattice 

positions. The slope represents the diffusion coefficient, D for the liquid. 
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MSD curve with simulation time when a crystalline solid is melted. 


