TABLE OF CONTENTS

Microscale Approach to Organic Laboratory Techniques (Sixth Edition)

4
6
12
17
25
26
28
29

Chemicals and Supplies for Each Experiment Answers to Questions

Experiment 1	Introduction to Microscale Laboratory	30
Experiment 2	Solubility	30
Experiment 3	Crystallization	34
Experiment 4	Extraction	38
Experiment 5	A Separation and Purification Scheme	42
Experiment 6	Chromatography	46
Experiment 7	Infrared Spectroscopy and Boiling-Point Determination	52
Experiment 8	Simple and Fractional Distillation	54
Experiment 9	Acetylsalicylic acid	57
Experiment 10	Isolation of the Active Ingredient in an Analgesic Drug	59
Experiment 11	Acetaminophen	61
Experiment 12	TLC Analysis of Analgesic Drugs	63
Experiment 13	Isolation of Caffeine from Tea or Coffee	68
Experiment 14	Isopentyl Acetate (Banana Oil)	72
Experiment 15	Essential Oils: Extraction of Oil of Cloves	76
Experiment 16	Spearmint and Caraway Oil: (+)- and (-)-Carvones	78
Experiment 17	Isolation of Chlorophyll and Carotenoid Pigments from Spinach	83
Experiment 18	Ethanol from Sucrose	86
Experiment 19	An Introduction to Molecular Modeling	89
Experiment 20	Computational Chemistry	89
Experiment 21	Reactivity of Some Alkyl Halides	90
Experiment 22	Nucleophilic Substitution Reactions: Competing Nucleophiles	94
Experiment 23	Synthesis of <i>n</i> -Butyl Bromide and <i>t</i> -pentyl chloride	99
Experiment 24	4-Methylcyclohexene	103
Experiment 25	Methyl Stearate from Methyl Oleate	106
Experiment 26	Preparation of Soap	110
Experiment 27	Gas Chromatographic Analysis of Gasolines	115
Experiment 28	Biodiesel	118
Experiment 29	Chiral Reduction of Ethyl Acetoacetate;	121
	Optical Purity Determination	
Experiment 30	Nitration of Aromatic Compounds Using a	124
	Recyclable Catalyst	

Experiment 31	Reduction of Ketones isomg Carrots as Biological	126
E	Reducing Agent	107
Experiment 32	Resolution of α -Phenylethylamine and	127
E-manimum 22	Determination of Optical Purity	122
Experiment 33	An Oxidation-Reduction Scheme: Borneol,	133
Europeinsont 24	Camphor, Isoborneol	127
Experiment 34	Multistep Reaction Sequence: The Conversion of Benzaldehyde to Benzilic Acid	137
Experiment 35	Triphenylmethanol and Benzoic Acid	144
Experiment 36	Aqueous-based Organopzinc Reactions	144
Experiment 37	Sonogashira Coupling of Iodosubstituted Aromatic	151
Experiment 57	Compounds with Alkynes Using a Palladium Catalyst	134
Experiment 38	Grubbs-Catalyzed Metathesis of Eugenol with 1,4-	157
Experiment 56	Butenediol to Prepare a Natural Product	157
Experiment 39	The Aldol Condensation Reaction: Preparation	160
Experiment 39	of Benzalacetophenones (Chalcones)	100
Experiment 40	A Green Enantioseletive Aldol Condensation Reaction	163
Experiment 40	Preparation of an α , β -Unsaturated Ketone	165
Experiment 41	via Michael and Aldol Condensation Reactions	104
Experiment 42		166
Experiment 42 Experiment 43	Preparation of Triphenylpyrdine Wittie Protection: Properties of 1.4 Diphenyl 1.2 Putediane	167
Experiment 45	Wittig Reaction: Preparation of 1,4-Diphenyl-1,3-Butadiene Relative Reactivities of Several Aromatic Compounds	107
-	Nitration of Methyl Benzoate	
Experiment 45		173
Experiment 46	Preparation of Methyl Orange	174
Experiment 47	Preparation of Indigo	177
Experiment 48	Formulation of a Paint and Art Project	181
Experiment 49	Benzocaine	183
Experiment 50	<i>N</i> , <i>N</i> -Diethyl- <i>m</i> -Toluamide: The Insect Repellent "OFF"	188
Experiment 51	Sulfa Drugs: Preparation of Sulfanilamide	190
Experiment 52	Preparation and Properties of Polymers:	199
Experiment 52	Polyester, Nylon, and Polystyrene	177
Experiment 53	The Diels-Alder Reaction of Cyclopentadiene	203
Experiment 55	with Maleic Anhydride	203
Experiment 54	Diels-Alder Reaction with Anthracene-9-methanol	205
Experiment 55	Photoreduction of Benzophenone and	205
Experiment 55	Rearangement of Benzpinacol to Benzopinacolone	200
Experiment 56	Luminol	210
Experiment 57	Identification of Unknowns	210
Experiment 58	Preparation of a C-4 or C-5 Acetate Ester	227
Experiment 59	Competing Nucleophiles in S_N1 and S_N2 Reactions:	229
Experiment 59	Investigations using 2-Pentanol and 3-Pentanol	
Experiment 60	Friedel-Crafts Acylation	233
Experiment 61	The Analysis of Antihistamine Drugs by Gas	233 247
Experiment of	Chromatography-Mass Spectrometry	2.7
Experiment 62	The Use of Organozinc Reagents in Synthesis	248
Experiment 63	Synthesis of Naproxen by Palladium Catalysis	249
Experiment 64	The Aldehyde Enigma	253
Experiment 65	Synthesis of Substituted Chalcones: A Guided-	255 255
Lapornion 00	Inquiry Experience	235
Experiment 66	Green Epoxidation of Chalcones	259
Experiment 67	Cyclopropanation of Chalcones	261
Lapornion 07	2	201

Experiment 68	Michael and Aldol Condensation Reactions	263
Experiment 69	Esterification Reactions of Vanillin: The Use of NMR	264
	to Solve a Structure Proof Problem	

Answers to Problems in the Techniques Section

Technique 1	Laboratory Safety	266
Technique 2	The Laboratory Notebook, Calculations, and	266
-	Laboratory Records	
Technique 3	Laboratory Glassware: Care and Cleaning	266
Technique 4	How to Find Data for Compounds: Handbooks	267
•	and Catalogs	
Technique 5	Measurement of Volume and Weight	268
Technique 6	Heating and Cooling Methods	269
Technique 7	Reaction Methods	271
Technique 8	Filtration	272
Technique 9	Physical Constants of Solids: The Melting Point	274
Technique 10	Solubility	274
Technique 11	Crystallization: Purification of Solids	275
Technique 12	Extractions, Separations, and Drying Agents	279
Technique 13	Physical Constants of Liquids: The Boiling	283
	Point and Density	
Technique 14	Simple Distillation	284
Technique 15	Fractional Distillation, Azeotropes	285
Technique 16	Vacuum Distillation, Manometers	288
Technique 17	Sublimation	289
Technique 18	Steam Distillation	290
Technique 19	Column Chromatography	291
Technique 20	Thin-Layer Chromatography	293
Technique 21	High-Performance Liquid Chromatography (HPLC)	294
Technique 22	Gas Chromatography	295
Technique 23	Polarimetry	296
Technique 24	Refractometry	298
Technique 25	Infrared Spectroscopy	299
Technique 26	Nuclear Magnetic Resonance Spectroscopy	300
Technique 27	Carbon-13 Nuclear Magnetic Resonance Spectroscopy	301
Technique 28	Mass Spectrometry	301
Technique 29	Guide to the Chemical Literature	301
Correlation of Experiment	s with Lecture Topics	303

PREFACE

Introduction to Organic Laboratory Techniques: A Microscale Approach (Sixth Edition) continues our dedication to the microscale approach to the teaching of the organic laboratory. In this edition we have devoted considerable effort toward improving the safety of all of the experiments. Technique Chapter 1, "Laboratory Safety," places strong emphasis on the safe use and disposal of hazardous chemicals. We have included information on Material Safety Data Sheets (MSDS) and Right-to-Know laws. We have continued to update and improve instructions for the handling of waste products that are produced in the experiments. We recommend that virtually all waste, including aqueous solutions, be placed into appropriate waste containers.

This edition of the Microscale book continues the tradition of including stand-alone technique experiments: Solubility, Crystallization, Extraction, Separation and Purification Scheme, Chromatography, Simple and Fractional Distillation, and Infrared Spectroscopy and Boiling Point Determination (Experiments 2-8). These seven experiments emphasize understanding of and proficiency in performing the techniques.

The new experiments are listed in the Preface of the Textbook. These include several new "green" chemistry experiments and some project-based experiments. In the latter experiments, students must either solve a significant problem or they must generate all of part of the experimental procedure. The Green Chemistry essay has been updated and some of the experiments have been modified to make them more "green." We also offer an alternative way of solving unknowns using mainly spectroscopy.

We have included Chemical Abstract Services (CAS) registry numbers for each of the chemicals. In this way, you should find it easier to locate chemicals when alternative names may be used in catalogs. We hope that this instructor's manual will assist you in preparing solutions, chemical reagents, supplies, and equipment necessary for each experiment that you choose to do. The lists of chemicals and equipment required for each experiment are based on the amount required for ten students. For chemicals, the amounts indicated include some excess. At the end of the manual we have included a section that correlates the experiments with topics presented in standard organic lecture courses.

The time required for each experiment is given in laboratory periods. It is assumed that a laboratory period is about three hours in length. For laboratory

⁴

periods that are either shorter or longer, appropriate adjustments must be made.

The technique chapters of the textbook are designed to stand independently from the experiments. You may have a favorite experiment that you like to do in your course. If this is the case, you can freely add your experiment and still take advantage of the technique chapters in the textbook. Since both standard-scale and microscale techniques are described in the technique chapters, you may even add some small-scale experiments and still be able to refer your students to the appropriate sections in these chapters for information on each technique.

A new feature of the Instructor's Manual is the inclusion of some laboratory practical exams that test students on two basic organic laboratory techniques: crystallization and extraction. You may find these exams to be a useful way of evaluating student technique. The idea is to have students perform techniques without the textbook and without looking over another student's shoulder for help!

If you encounter problems with any of the experiments in the Textbook or if you need help in setting up your laboratory, please contact us. We would also like to hear from you if you have any suggestions for improvements in techniques or in any of the experiments.

Donald L. Pavia	Phone: (360)-734-9301 E-Mail: pavia@comcast.net
Gary M. Lampman	Phone: (360)-733-9054 E-Mail: lampman@chem.wwu.edu
George S. Kriz	Phone: (360)-650-3126 E-Mail: George.Kriz@wwu.edu
Department of Chemistry, MS 9150 Western Washington University Bellingham, Washington 98225	FAX: (360)-650-2826
Randall G. Engel E-Mail: Rand North Seattle College 9600 College Way N Seattle, WA 98103	all.Engel@seattlecolleges.edu

Experiment 1

INTRODUCTION TO MICROSCALE LABORATORY

TIME ESTIMATE:	1 hour	

CHEMICALS AND SUPPLIES PER 10 STUDENTS:

Laboratory E	Exercise 1

Hexane	6 mL
Automatic pipet (100 to 1000 μL range) (Option A)	
Dispensing pump, 1-mL size, adjusted to deliver 0.500 mL (Option B)	
Graduated pipets, 1.0 mL (Option C)	10
Pipet pumps (Option C)	10
Waste disposal container for hexane	
Laboratory Exercise 2	
Pasteur (disposable pipettes)	10
Rubber bulbs	10
CAS Registry number:	

Hexanes 110-54-3

Experiment 2

SOLUBILITY

TIME ESTIMATE: Parts A-D (3 hours); Part E (1 hour)

30

Technique 1

LABORATORY SAFETY

No problems

Technique 2

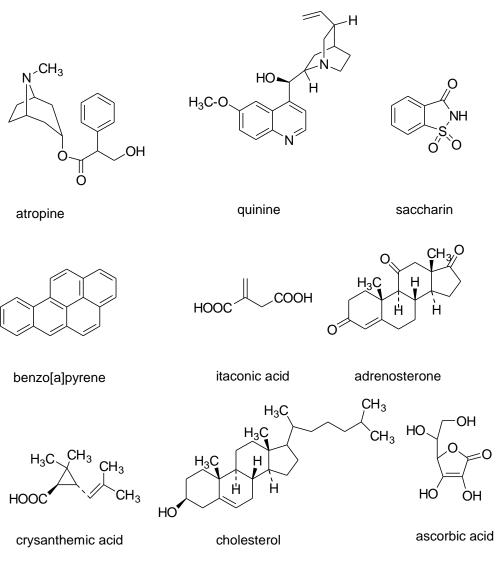
THE LABORATORY NOTEBOOK, CALCULATIONS, AND LABORATORY RECORDS

No problems

Technique 3

LABORATORY GLASSWARE: CARE AND CLEANING

No problems


266

Technique 4

HOW TO FIND DATA FOR COMPOUNDS: HANDBOOKS AND CATALOGS

Answers to Problems

1.

267

- 2. Biphenyl: mp 69-72 °C (Aldrich Handbook)
 4-Bromobenzoic acid: mp 252-254 °C (Aldrich Handbook)
 3-Nitrophenol: mp 96-98 °C (Aldrich Handbook)
- Octanoic acid: 110-111 °C at 4mm pressure (CRC Handbook)
 Acetophenone, 4-chloro: 273 °C at 760mm and 124-126 at 30mm (CRC)
 2-Heptanol, 2-methyl: 156 °C at 760mm (CRC Handbook)
- 4. Octanoic acid: density 0.8615; index of refraction 1.4278
 Acetophenone, 4-chloro: density 1.1922; index of refraction 1.5550
 2-Heptanol, 2-methyl: density 0.8142; index of refraction 1.4238 (CRC)
- 5. (*R*)-Camphor: $+44.1^{\circ}$ (*S*)-Camphor: -43°
- Poisoning may occur by inhalation, ingestion or skin absorption.
 High concentrations results in depression of the central nervous system.
 Inhalation may cause pulmonary edema.

Technique 5

MEASUREMENT OF VOLUME AND WEIGHT

Answers to Problems

- 1. (a) Graduated cylinder
 - (b) 1000 μ L automatic pipette set at 760 μ L. Also can use a dispensing pump.
 - (c) Calibrated Pasteur pipette
- 2. You should preweigh the container and then add 0.76 mL of the liquid using an automatic pipette. The container should then be reweighed. The difference gives the actual weight of the limiting reagent.
- 3. (a) Diethyl ether, d = 0.71 g/mLweight = (0.71 g/mL)(0.25 mL) = 0.18 g

268