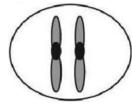
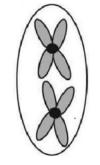

| ne                        |                        |                      |                         |                        |    |
|---------------------------|------------------------|----------------------|-------------------------|------------------------|----|
| LTIPLE CHOICE. Cho        | ose the one alternat   | ive that best com    | pletes the statement or | r answers the question | •  |
| 1) Living organisms       | are categorized into   | o two major group    | s based on the presence | e or absence of a      | 1) |
| nucleus. What gro         | oup is defined by the  | e presence of a nu   | cleus?                  |                        |    |
| A) mitochondr             | ial organism           |                      |                         |                        |    |
| B) virus                  |                        |                      |                         |                        |    |
| C) prokaryotic            | organism               |                      |                         |                        |    |
| D) bacterium              |                        |                      |                         |                        |    |
| E) eukaryotic o           | organism               |                      |                         |                        |    |
| 2) What is the name       | of the membranous      | s structure that cor | npartmentalizes the cy  | toplasm of eukaryotic  | 2) |
| organisms?                |                        |                      |                         |                        |    |
| A) nucleoid               |                        |                      |                         |                        |    |
| B) ribosome               |                        |                      |                         |                        |    |
| C) mitochondr             |                        |                      |                         |                        |    |
| D) endoplasmi             | ic reticulum           |                      |                         |                        |    |
| E) cytosol                |                        |                      |                         |                        |    |
| 3) You have identifi      | ed a mutant in hum     | an cells that when   | shifted to 37°C, the ma | icrofilaments          | 3) |
| depolymerize (fal         | ll apart). Which of t  | he following woul    | d be true about this m  | utant at 37°C?         |    |
|                           | ould change shape.     |                      |                         |                        |    |
| B) The mitoche            | ondria would no lon    | ıger work.           |                         |                        |    |
|                           | hromatids would no     | •                    |                         |                        |    |
| D) The endopla<br>lipids. | asmic reticulum cou    | ld still import pol  | ypeptides but could no  | longer synthesize      |    |
| E) The cells wo           | ould no longer be ab   | le to produce ATI    | ).                      |                        |    |
| 4) Name two cellula       | ar organelles, each co | ontaining genetic i  | naterial, which are inv | olved in either        | 4) |
| photosynthesis or         |                        |                      |                         |                        |    |
|                           | and endoplasmic re     | ticulum              |                         |                        |    |
| B) lysosome ar            | 1                      |                      |                         |                        |    |
|                           | smooth endoplasmic     | reticula             |                         |                        |    |
| · ·                       | s and mitochondria     |                      |                         |                        |    |
| E) peroxisome             | s and mitochondria     |                      |                         |                        |    |
| 5) The nucleolus org      | ganizer region (NOR    | R) is responsible fo | r production of what t  | ype of cell structure? | 5) |
| A) nucleolus              |                        |                      |                         |                        |    |
| B) endoplasmi             | ic reticulum           |                      |                         |                        |    |
| C) chromatids             |                        |                      |                         |                        |    |
| D) mitochondr             | ria                    |                      |                         |                        |    |
| E) ribosome               |                        |                      |                         |                        |    |
| 6) The diploid chror      | mosome number of a     | an organism is usu   | ally represented as 2n  | . Humans have a        | 6) |
| diploid chromosc          | ome number of 46. W    | Vhat would be the    | expected haploid chro   | mosome number in a     |    |
| human?                    |                        |                      |                         |                        |    |
| A) 16                     | B) 23                  | C) 12                | D) 92                   | E) 24                  |    |

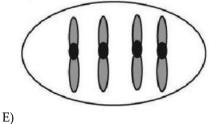
Exam

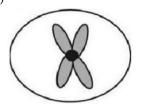

| <ul> <li>7) Which chromosom</li> <li>A) sex chromoso</li> <li>B) acrocentric</li> <li>C) submetacentri</li> <li>D) metacentric</li> <li>E) telocentric</li> </ul> | ome                                                                                                  | put the p arm is much                                                                                    | shorter than the q a               | rm?                      | 7)  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------|-----|
| B) They do not p<br>C) They are inde<br>D) They are alw                                                                                                           | e same gene confi<br>participate in meio<br>ependent during r<br>ays metacentric.<br>homologous chro | guration and same loc<br>osis.                                                                           | i.                                 | will get one sex         | 8)  |
| 9) What significant ge<br>A) centromere d<br>B) DNA synthes<br>C) karyokinesis<br>D) cytokinesis<br>E) chromosome                                                 | ivision<br>iis                                                                                       | curs in the S phase of t                                                                                 | he cell cycle?                     |                          | 9)  |
| B) RNA replicat<br>C) sister chroma<br>D) DNA recomb                                                                                                              | essentially doubl<br>es<br>tids move to oppo                                                         | osite poles                                                                                              |                                    |                          | 10) |
| 11) The house fly, <i>Mus</i><br>should be present i<br>A) 12                                                                                                     |                                                                                                      | haploid chromosome<br>tic, metaphase cell?<br>C) 24                                                      | number of 6. How<br>D) 3           | many chromatids<br>E) 18 | 11) |
| 12) How many haploid<br>chromosome numb<br>A) 32                                                                                                                  |                                                                                                      | omes are present in a c<br>C) 8                                                                          | liploid individual c<br>D) 2       | ell with a<br>E) 1       | 12) |
| 13) How many haploid<br>A) 4<br>B) 2<br>C) 3<br>D) 5<br>E) It is impossib                                                                                         |                                                                                                      | omes are present in an<br>information given.                                                             | individual cell that               | t is pentaploid (5n)?    | 13) |
| (Oryctolagus cunicu                                                                                                                                               | cat ( <i>Felis domestici</i><br><i>lus</i> ) has a diploid                                           | s media of an animal<br>us) has a diploid chror<br>chromosome number<br>tissues of this alleged<br>C) 40 | nosome number of of 44, what would | 38 and a rabbit          | 14) |

|                                                                                                                                                                                                    | yould be arrested<br>d chromosome co<br>not function corr<br>utate during G2.     | l until the error could b<br>ould be put through m<br>ectly.                                                  | e corrected.                          |                                           | 15) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------|-----|
| 16) In which stage of the                                                                                                                                                                          |                                                                                   |                                                                                                               | $D \subset 1$                         |                                           | 16) |
| A) anaphase                                                                                                                                                                                        | B) M                                                                              | C) S                                                                                                          | D) G1                                 | E) G2                                     |     |
| 17) When cells withdraw be in what stage?                                                                                                                                                          | from the contin                                                                   | uous cell cycle and ent                                                                                       | er a "quiescent" ph                   | ase, they are said to                     | 17) |
| A) S                                                                                                                                                                                               | B) M                                                                              | C) G1                                                                                                         | D) G2                                 | E) G0                                     |     |
| <ul> <li>18) A typical G1 nucleus true?</li> <li>A) A cell in propha</li> <li>B) A prophase cell</li> <li>C) A cell in G2 is 4</li> <li>D) A cell in metap</li> <li>E) A cell in propha</li> </ul> | ase is 2n and con<br>l is 4n and contai<br>ln and contains 2<br>hase is 2n and co | atains 2n of DNA.<br>Ins 4C of DNA.<br>IC of DNA.<br>Intains 2C of DNA.                                       | uts) of DNA. Whic                     | h of the following is                     | 18) |
| 19) Which part of interpl<br>A) S                                                                                                                                                                  | hase does DNA c<br>B) G2                                                          | duplication take place?<br>C) M                                                                               | D) G1                                 | E) G0                                     | 19) |
| 20) The centromere of a of A) anaphase<br>B) interphase<br>C) prometaphase<br>D) telophase<br>E) prophase                                                                                          | chromosome sep                                                                    | arates during                                                                                                 | -                                     |                                           | 20) |
| essentially doubles d                                                                                                                                                                              | clear DNA is res<br>uring the S phas                                              | of the mosquito <i>Culex p</i><br>stricted to chromosome<br>e of interphase, how m<br>e that the G1 nucleus o | s and that the amo<br>uch nuclear DNA | unt of nuclear DNA<br>would be present in | 21) |
| 22) If a typical somatic co<br>of that organism?<br>A) 32                                                                                                                                          | ell has 64 chromo<br>B) 64                                                        | osomes, how many chr<br>C) 16                                                                                 | omosomes are exp<br>D) 8              | ected in each gamete<br>E) 128            | 22) |

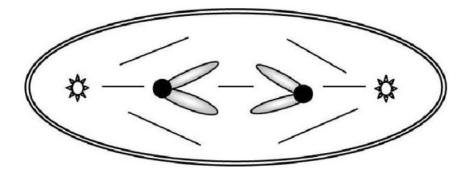

- 23) In an organism with 60 chromosomes, how many bivalents would be expected to form during 23) \_\_\_\_\_\_ meiosis? A) 240 B) 15 C) 120 D) 60 E) 30
- 24) The ant, *Myrmecia pilosula*, is found in Australia and is named bulldog because of its aggressive behavior. It is particularly interesting because it carries all its genetic information in a single pair of chromosomes. In other words, 2n = 2. (Males are haploid and have just one chromosome.) Which of the following figures would most likely represent a correct configuration of chromosomes in a metaphase I cell of a female?
  - A)





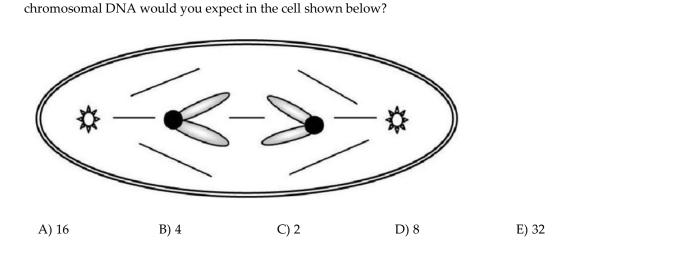






D)






| of DNA. How m<br>A) 8 picogram<br>B) 32 picogram<br>C) 16 picogram<br>D) 4 picogram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | uch DNA would be<br>ns<br>ms<br>ms<br>ns                                     | e diploid <i>Myrmecia pi</i><br>expected in a metapl<br>vided to answer the c | nase I cell of a female                                               | contains 2 picograms<br>e? | 25) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------|-----|
| species, with fen<br>crossed a female<br>(males are haplo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nales having chromo<br>of species (A) with 3<br>id, and each gamete          |                                                                               | . 20, 32, 48, 60, 62, an<br>a male of species (B<br>lement). How many | -                          | 26) |
| A) side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-side-by-sid | de alignment of nonl<br>de alignment of hom<br>vement to opposite p<br>ation | gnificant event in me<br>homologous chromos<br>iologous chromosom<br>poles    | somes                                                                 |                            | 27) |
| A) Homologo<br>B) The produc<br>C) Synapsis o<br>D) Nondisjund                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | us chromosomes are<br>cts are four identical<br>ccurring in the secon        | gametes.<br>ad meiotic division.<br>extra bivalents formin                    |                                                                       |                            | 28) |
| A) tetrad form<br>B) law of inde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nation<br>ependent assortment<br>n lining up of chromo<br>/er                | e of genetic variation<br>soomes on the metap                                 |                                                                       |                            | 29) |



Which of the following is the correct stage for this sketch?

- A) anaphase of mitosis
- B) anaphase of meiosis I
- C) telophase of meiosis II
- D) anaphase of meiosis II
- E) telophase of mitosis



31) Given that each G1 nucleus from this organism contains 16 picograms of DNA, how many picogram 31)

32) The horse (Equus caballus) has 32 pairs of chromosomes, whereas the donkey (Equus asinus) has 31 32) pairs of chromosomes. How many chromosomes would be expected in the somatic tissue of a mule, which is a hybrid of these two animals? B) 62 A) 64 C) 63 D) 126 E) 60 33) Which of the following are the areas where chromatids intertwine during meiosis? 33) A) tetrad B) nondisjunction C) bivalent D) synapsis E) chiasma

| 34) After meiosis II, | would be for | med.        |          |            | 34) |
|-----------------------|--------------|-------------|----------|------------|-----|
| A) chiasma            | B) monads    | C) synapsis | D) dyads | E) tetrads |     |

| C) Mosaic chromo<br>D) In a heterozygo                                                                                                                                    | ould have the same<br>ote, there would or<br>osomes would forn                                                               | e genotype.<br>1ly be a 1:1:1:1 forma<br>n.<br>1ly be a 2:2 formation | tion after meiosis II, | never a 2:2.      | 35) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------|-------------------|-----|
| <ul> <li>36) Which term describe</li> <li>A) middling</li> <li>B) multiplicative</li> <li>C) confrontational</li> <li>D) reducational</li> <li>E) equinational</li> </ul> |                                                                                                                              |                                                                       |                        |                   | 36) |
| mitotic or meio<br>C) Cells are consid<br>D) Sister chromati                                                                                                              | er S phase.<br>e always contains t<br>otic cell cycle.<br>dered to be 2n after<br>ds in mitosis are n<br>e may contain one o |                                                                       |                        |                   | 37) |
| 38) If a typical G1 nucleus contains 2C (two complements) of DNA, a gamete that is haploid (n) contains of DNA.                                                           |                                                                                                                              |                                                                       |                        |                   | 38) |
| A) 4C                                                                                                                                                                     | B) 3C                                                                                                                        | C) 2C                                                                 | D) 0.5C                | E) 1C             |     |
| <ul> <li>39) During meiosis, chro</li> <li>A) anaphase I</li> <li>B) anaphase II</li> <li>C) telophase II</li> <li>D) metaphase I</li> <li>E) prophase I</li> </ul>       | omosome number i                                                                                                             | reduction takes place                                                 | e in                   |                   | 39) |
| 40) A bivalent at propha<br>A) two                                                                                                                                        | se I contains<br>B) four                                                                                                     | chromatids.<br>C) eight                                               | D) one                 | E) three          | 40) |
| 41) The meiotic cell cycle<br>replication(s).                                                                                                                             | ,                                                                                                                            | , 0                                                                   | ,                      |                   | 41) |
| A) two; one                                                                                                                                                               | B) two; two                                                                                                                  | C) one; two                                                           | D) two; zero           | E) one; one       |     |
| 42) An organism with a the end of meiosis.                                                                                                                                | haploid number of                                                                                                            | f 10 will produce                                                     | combinations           | of chromosomes at | 42) |
| A) 32                                                                                                                                                                     | B) 1024                                                                                                                      | C) 100                                                                | D) 10,000              | E) 10             |     |

| 43) An organism with a d<br>chromosomes at the e<br>A) 23<br>B) 529<br>C) 8388608<br>D) 46<br>E) 7.04 × 10 <sup>13</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                       | number of 46 will pro                                                  | oduce comb           | pinations of      | 43) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------|----------------------|-------------------|-----|
| <ul> <li>44) The stage at which "si listed below?</li> <li>A) mitotic metapha</li> <li>B) metaphase of metaph</li></ul> | se<br>eiosis I                          | o opposite poles" imn                                                  | nediately follows wh | ich of the stages | 44) |
| 45) <i>Drosophila melanogaste</i><br>G2 nucleus from one o<br>much nuclear DNA w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | of the individuals in                   | this scenario contains                                                 | U U                  |                   | 45) |
| A) 4 pg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B) 2 pg                                 | C) 8 pg                                                                | D) 1 pg              | E) 16 pg          |     |
| 46) In a healthy female, h<br>oocytes? How many f<br>A) 100; 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                                                        |                      |                   | 46) |
| 47) In a healthy male, how<br>spermatocytes? (b) 40<br>A) (a) 400; (b) 400<br>B) (a) 100; (b) 800<br>C) (a) 1600; (b) 800<br>D) (a) 1600; (b) 1600<br>E) (a) 800; (b) 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 secondary spermat                     | -                                                                      | be formed from (a) 4 | 00 primary        | 47) |
| 48) There is about as muc<br>A) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | h nuclear DNA in a <sub>J</sub><br>B) 2 | primary spermatocyt<br>C) 0.5                                          | e as in sper<br>D) 3 | matids.<br>E) 4   | 48) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | spermatozoa, sperma                     | bes expected to be for<br>atid, primary sperma<br>ermatocyte, spermato | tocyte, secondary sp | ermatocyte        | 49) |

C) primary spermatocyte, secondary spermatocyte, spermatid, spermatozoa, spermatogonia

D) spermatogonia, primary spermatocyte, secondary spermatocyte, spermatid, spermatozoa

E) spermatozoa, spermatid, spermatogonia, primary spermatocyte, secondary spermatocyte

|                          |                       | , i i                 | e formed during oogene<br>st polar body, ootid and |                | 50) |
|--------------------------|-----------------------|-----------------------|----------------------------------------------------|----------------|-----|
|                          |                       |                       | y, second polar body, o                            |                |     |
| C) primary oocy          | vte, secondary oocyte | e and first polar bod | y, ootid, second polar b                           | ody, oogonium  |     |
| D) oogonium, p<br>body   | rimary oocyte, secor  | d polar body and o    | otid, secondary oocyte a                           | nd first polar |     |
| E) primary oocy<br>ootid | rte, secondary oocyte | e and first polar bod | y, oogonium, second po                             | lar body and   |     |
| 51) In plants, which sta | age is haploid?       |                       |                                                    |                | 51) |
| A) spermatozoa           |                       |                       |                                                    |                |     |
| B) polar body            |                       |                       |                                                    |                |     |
| C) sporophyte            |                       |                       |                                                    |                |     |
| D) gametophyte           | 2                     |                       |                                                    |                |     |
| E) germ cell             |                       |                       |                                                    |                |     |
| 52) Which of the follow  | ving is diploid?      |                       |                                                    |                | 52) |
| A) sperm                 | <b>°</b>              |                       |                                                    |                |     |
| B) megaspore             |                       |                       |                                                    |                |     |
| C) zygote                |                       |                       |                                                    |                |     |
| D) gametophyte           |                       |                       |                                                    |                |     |
| E) egg                   |                       |                       |                                                    |                |     |
| 53) Electron microscop   | y of metaphase chro   | omosomes demonst      | rated various degrees of                           | coiling. What  | 53) |
| was the name of th       | e model that depicte  | ed this process?      |                                                    |                |     |
| A) double-stran          | ded                   |                       |                                                    |                |     |
| B) folded-fiber          |                       |                       |                                                    |                |     |
| C) packing               |                       |                       |                                                    |                |     |
| D) chromatid for         | e                     |                       |                                                    |                |     |
| E) condensation          | l                     |                       |                                                    |                |     |
| 54) During the transiti  | on from interphase t  | o metaphase chrom     | osome, the DNA under                               | goes how much  | 54) |
| compaction?              |                       |                       |                                                    |                |     |
| A) 50 fold               | B) 10 fold            | C) 2 fold             | D) 5000 fold                                       | E) 500 fold    |     |

Answer Key Testname: UNTITLED38

1) E 2) D 3) A 4) D 5) E 6) B 7) B 8) E 9) B 10) A 11) C 12) D 13) D 14) D 15) B 16) D 17) E 18) E 19) A 20) A 21) E 22) A 23) E 24) A 25) D 26) D 27) B 28) E 29) E 30) D 31) A 32) C 33) E 34) B 35) D 36) D 37) B 38) E 39) A 40) B 41) A 42) B 43) C 44) E 45) A 46) A 47) C 48) E 49) D 50) A

Answer Key Testname: UNTITLED38

51) D 52) C 53) B 54) D Exam

Name\_\_\_\_\_

## MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

| <ol> <li>VNTRs are useful in DNA forensics because</li> </ol>                                                | ·                                            | 1)       |
|--------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------|
| A) the VNTRs have very little variation in leng                                                              |                                              |          |
| B) the number of VNTRs varies between peop                                                                   |                                              |          |
| C) the VNTRs have exactly the same sequence                                                                  |                                              |          |
| D) the VNTRs act as an identifier for a group of                                                             |                                              |          |
| SHORT ANSWER. Write the word or phrase that best con                                                         | npletes each statement or answers the que    | stion.   |
| <ol><li>Justify the FBI's use of only 20 short tandem repe<br/>forensic analysis.</li></ol>                  | ats (STRs) as their core set of STRs for     | 2)       |
| MULTIPLE CHOICE. Choose the one alternative that bes                                                         | t completes the statement or answers the q   | uestion. |
| 3) The development of which biotechnology revolu                                                             | tionized the field of DNA forensics?         | 3)       |
| A) Sanger sequencing                                                                                         | B) GWAS                                      |          |
| C) PCR                                                                                                       | D) capillary electrophoresis                 |          |
| SHORT ANSWER. Write the word or phrase that best con                                                         | npletes each statement or answers the que    | stion.   |
| <ol> <li>Present evidence supporting the argument that Y<br/>sufficient for proper DNA profiling.</li> </ol> | chromosome STR profiling is not              | 4)       |
| MULTIPLE CHOICE. Choose the one alternative that bes                                                         | t completes the statement or answers the q   | uestion. |
| 5) Mitochondrial DNA profiling is useful in develo                                                           | ping DNA profiles from samples that are in   | less 5)  |
| than ideal condition. What is a major limitation o<br>A) It is present in high copy number.                  | f using mitochondrial DNA profiling?         |          |
| B) It is useful in identifying victims of disaster                                                           | s when relatives are available for reference |          |
| C) It is possible to differentiate between mater                                                             |                                              |          |
| D) It is not possible to differentiate between m                                                             |                                              |          |
| 6) Single-nucleotide polymorphisms (SNPs) are be                                                             | ng used more and more in forensic analysis   | svet 6)  |
| have not been fully embraced. However, SNPs have following fields?                                           |                                              |          |
| A) evolution studies                                                                                         | B) VNTR copy number studies                  |          |
| C) protein stability studies                                                                                 | D) epigenetic regulation studies             |          |
| SHORT ANSWER. Write the word or phrase that best con                                                         | npletes each statement or answers the que    | stion.   |
| 7) DNA phenotyping represents an emerging techn                                                              | ology that uses SNPs to determine            | 7)       |
| physical features. Describe why DNA phenotypi<br>from other scientists with regard to its accuracy.          | ng faces skepticism in court rooms and       |          |

## MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

| <ul><li>8) DNA phenotyping poses several conc<br/>a concern with DNA phenotyping?</li><li>A) racial profiling</li><li>B) its ability to help identify missir</li></ul>         | cerns as an emerging technology. Which of the following is not                                                          | 8)  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----|
| C) intellectual property of the com<br>D) privacy violations                                                                                                                   |                                                                                                                         |     |
| SHORT ANSWER. Write the word or phrase t                                                                                                                                       | that best completes each statement or answers the question.                                                             |     |
| 9) Provide support for using the product individual has a unique DNA profile                                                                                                   | ct rule in generating a high confidence that an 9)<br>e using multiple STRs.                                            |     |
| MULTIPLE CHOICE. Choose the one alternat                                                                                                                                       | tive that best completes the statement or answers the question                                                          |     |
| 10) Which of the following contribute to a in a population?                                                                                                                    | an increased probability of a random match of a DNA profile                                                             | 10) |
| <ul><li>A) a population containing limited</li><li>B) a random population with man</li><li>C) a population with a small numb</li><li>D) a population with inbreeding</li></ul> | ny relatives                                                                                                            |     |
| <ol> <li>CODIS (Combined DNA Index System<br/>following EXCEPT</li> </ol>                                                                                                      | em) is a database that contains DNA profiles from all of the                                                            | 11) |
| A) crime scene evidence<br>C) public servants                                                                                                                                  | <ul><li>B) unidentified remains</li><li>D) people convicted of certain crimes</li></ul>                                 |     |
| SHORT ANSWER. Write the word or phrase t                                                                                                                                       | that best completes each statement or answers the question.                                                             |     |
|                                                                                                                                                                                | g DNA profiling in forensics with the advent of 12)                                                                     |     |
| 13) Why does DNA profiling pose potent CODIS?                                                                                                                                  | tial ethical problems when a partial match occurs in 13)                                                                |     |
| MULTIPLE CHOICE. Choose the one alternat                                                                                                                                       | tive that best completes the statement or answers the question                                                          |     |
|                                                                                                                                                                                | cuting criminal cases, lawyers must be very thorough in their<br>Which of the following could cause issues with the DNA | 14) |
| A) quantity B) defere                                                                                                                                                          | rence C) transference D) recombination                                                                                  |     |
| SHORT ANSWER. Write the word or phrase t                                                                                                                                       | that best completes each statement or answers the question.                                                             |     |
| 15) Explain why Identical twins can have differing phenotypes.                                                                                                                 | e the same STRs in a DNA profile yet still exhibit 15)                                                                  |     |

## MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

| 16) Using the values in TABLE ST 2.2; what is the expected genotype frequency for the two loci profile consisting of D8S1179 and D5S818? |                                                              |                           |                            | 16) |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------|----------------------------|-----|
| A) 0.019                                                                                                                                 | B) 0.001936                                                  | C) 0.000421               | D) 0.102                   |     |
| VNTRs.                                                                                                                                   | elements in the genome. They                                 |                           | des per repeat compared to | 17) |
| A) the same num                                                                                                                          | ıber                                                         | B) fewer                  |                            |     |
| C) precisely two                                                                                                                         | times the number                                             | D) more                   |                            |     |
| -                                                                                                                                        | ges of STR profiling over VN                                 |                           |                            | 18) |
| · •                                                                                                                                      | Ich less DNA because PCR ca<br>variable in the number of rep | 1 1                       | -                          |     |
|                                                                                                                                          | ore variable sequences reduci                                |                           |                            |     |
| -                                                                                                                                        | able in the number of repeats                                |                           |                            |     |
| D) STRS are vari                                                                                                                         | able in the number of repeats                                | , whereas viving are no   | L                          |     |
| 19) Mitochondrial DN<br>using mtDNA?                                                                                                     | A profiling is used to trace the                             | e maternal side of family | r trees. Why is this done  | 19) |
| A) The mtDNA                                                                                                                             | undergoes recombination allo                                 | wing allelic mixture.     |                            |     |
| B) The mtDNA                                                                                                                             | under low selective pressure                                 | mutates readily.          |                            |     |
| C) The mtDNA                                                                                                                             | only comes from the father so                                | all differences are from  | the mother.                |     |
| D) The mtDNA                                                                                                                             | s supplied to the zygote only                                | from the egg.             |                            |     |
| 20) Mitochondrial DN                                                                                                                     | A profiling is primarily used t                              | to differentiate          |                            | 20) |
| A) siblings                                                                                                                              | r proming is primarily used                                  | B) mothers from o         |                            |     |
| C) mothers and                                                                                                                           | sone                                                         | D) unrelated indiv        | 8                          |     |
| C) momens and                                                                                                                            | 50115                                                        | D) unrelated mur          | viuuais                    |     |

## Answer Key Testname: UNTITLED65

1) B

- 2) By characterizing 20 STRs, the analysis covers over two billion combinations even if each STR only exhibits four alleles each. This is highly unlikely as STRs vary in repeats from 7 to 40 times.
- 3) C
- 4) Y chromosomal STR profiling is not sufficient for DNA profiling as it only focuses on the Y chromosome of individuals. As Y chromosomes do not undergo recombination, they are directly inherited from father to son and as such, all males of the same patrilineage will be identified by the same STR pattern.
- 5) D
- 6) A
- 7) DNA phenotyping faces scrutiny and skepticism due to its reliance on multiple genes as well as multiple SNPs in those genes to provide a rather low probability of a correct identification.
- 8) B
- 9) The product rule states that the probability of an individual having certain alleles in a population is the result of the product of each of the individual allelic frequencies in the population. As such, one STR locus with two alleles at a frequency of 0.361 and 0.141 would have a 10% chance of being unique in a population. However, by examining a second locus containing one allele at a frequency of 0.243, we can demonstrate that the likelihood of an individual having both STRs is ~0.6%.
- 10) D
- 11) C
- 12) Testing evidence for methylation patterns and comparing those patterns to those seen in natural DNA samples.
- 13) A partial match in CODIS could lead investigating agencies to focus on family members of the partial match. The ethical issue arises when it is considered right to suspect someone of a crime based on his or her DNA.
- 14) C
- 15) While the DNA sequence of identical twins is the same, there is evidence that environmental factors affect the epigenetic regulation of genes that could result in differing phenotypes.
- 16) B
- 17) B
- 18) A
- 19) D
- 20) D