Solutions to Practice Problems in the Text

Chapter One: Fundamentals of Mathematical Modeling

Practice Set 1-2

1. $d=r t$
$125=50 t$
[Divide both sides by 50.]
$t=2.5$ hours
2. $d=r t$
$170=r(2.5)$
[Divide both sides by 2.5.]
$68 \mathrm{mph}=r$
3. $I=\operatorname{Pr} t$

$$
I=(\$ 5000)(0.05)(2)=\$ 500
$$

4. $\quad I=P r t$
$616=(2800) r(4)$
$616=11200 r$
$0.055=r$
5. $A=\pi r^{2}$
$A=\pi(3)^{2}=(3.14)(9)=28.26 \mathrm{in}^{2}$
6. $\quad A=\pi r^{2}$
$12.56=(3.14) r^{2}$
$4=r^{2}$
$\sqrt{4}=2 \mathrm{ft}=r$
7. $A=1 / 2 b h$

$$
36=1 / 2(8) h
$$

$$
36=4 h
$$

9 in $=h$
8. $A=1 / 2 b h$
$150=1 / 2 b(40)$
$150=20 b$
$7.5 \mathrm{~cm}=b$
9. $A=\sqrt{s(s-a)(s-b)(s-c)}=\sqrt{15(15-5)(15-12)(15-13)}=$

$$
\sqrt{15(10)(3)(2)}=\sqrt{900}=30 \mathrm{in}^{2}
$$

10. $A=\sqrt{s(s-a)(s-b)(s-c)}=\sqrt{6(6-3)(6-4)(6-5)}=$ $\sqrt{6(3)(2)(1)}=\sqrt{36}=6 \mathrm{in}^{2}$
11. $\mathrm{C}=\frac{5}{9}(F-32)=\frac{5}{9}(68-32)=\frac{5}{9}(36)=20^{\circ} \mathrm{C}$
12. $\mathrm{C}=\frac{5}{9}(F-32)=\frac{5}{9}(-4-32)=\frac{5}{9}(-36)=-20^{\circ} \mathrm{C}$
13. $F=\frac{9}{5} C+32=\frac{9}{5}(-10)+32=-18+32=14^{\circ} F$
14. $F=\frac{9}{5} C+32=\frac{9}{5}(100)+32=180+32=212^{\circ} F$
15. $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-(-4)}{-1-2}=\frac{-3+4}{-1-2}=\frac{1}{-3}=-\frac{1}{3}$
16. $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-2-0}{-3-(-1)}=\frac{-2}{-3+1}=\frac{-2}{-2}=1$
17. $z=\frac{x-\bar{x}}{s}=\frac{95-100}{15}=\frac{-5}{15}=-\frac{1}{3}$
18. $z=\frac{x-\bar{x}}{s}=\frac{25.2-17.3}{7.9}=\frac{7.9}{7.9}=1$
19. $a^{2}+b^{2}=c^{2}$

$$
\begin{gathered}
3^{2}+4^{2}=c^{2} \\
9+16=c^{2} \\
25=c^{2} \\
\sqrt{25}=5=c
\end{gathered}
$$

20. $a^{2}+b^{2}=c^{2}$

$$
12^{2}+5^{2}=c^{2}
$$

$$
144+25=c^{2}
$$

$$
169=c^{2}
$$

$$
\sqrt{169}=13=c
$$

21. $M=P\left(1+\frac{r}{n}\right)^{n t}=5000\left(1+\frac{0.045}{12}\right)^{12^{* 10}}=5000\left(1+\frac{0.045}{12}\right)^{120}=\$ 7834.96$
22. $M=P\left(1+\frac{r}{n}\right)^{n t}=12,000\left(1+\frac{0.0325}{12}\right)^{12 * 5}=12,000\left(1+\frac{0.0325}{12}\right)^{60}=\$ 14,114.28$
23. $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-5 \pm \sqrt{(5)^{2}-4(1)(-6)}}{2(1)}=\frac{-5 \pm \sqrt{25+24}}{2}=$

$$
\frac{-5+\sqrt{49}}{2}=\frac{-5+7}{2}=\frac{2}{2}=1 \quad \text { or } \quad \frac{-5-\sqrt{49}}{2}=\frac{-5-7}{2}=\frac{-12}{2}=-6
$$

24. $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-(-9) \pm \sqrt{(-9)^{2}-4(2)(-5)}}{2(2)}=\frac{9 \pm \sqrt{81+40}}{4}=$

$$
\frac{9+\sqrt{121}}{4}=\frac{9+11}{4}=\frac{20}{4}=5 \quad \text { or } \quad \frac{9-\sqrt{121}}{4}=\frac{9-11}{4}=\frac{-2}{4}=-0.5
$$

25. $y=A e^{r n}=1,500,000 \mathrm{e}^{0.055 * 7}=1,500,000 \mathrm{e}^{0.385}=2,204,421$ bacteria
26. $y=A e^{r n}=45,000 \mathrm{e}^{0.015^{*} 10}=45,000 \mathrm{e}^{0.15}=52,282.5=52,283$ people
27. $I=P r t$
$\frac{I}{P t}=\frac{P r t}{P t}$
[Divide both sides by Pt.]
$\frac{I}{P t}=r$
28. $V=l w h$
$\frac{V}{l h}=\frac{l w h}{l h}$
[Divide both sides by lh.]

NOT
 FOR SALE

$\frac{V}{l h}=w$
29. $A=\frac{1}{2} b h$
$2 A=b h$
$\frac{2 A}{h}=b$
30. $V=\frac{1}{3} B h$

$$
3 V=B h
$$

[Multiply both sides by 3.]

$$
\frac{3 V}{B}=h
$$

[Divide both sides by B to solve for h.]
31. $P=2 L+2 W$
$P-2 W=2 L+2 W-2 W \quad$ [Subtract $2 W$ from both sides.]
$P-2 W=2 L$
$\frac{P-2 W}{2}=L$
32. $P=2 L+2 W$
$P-2 L=2 L+2 W-2 L$
$P-2 L=2 W$

$$
\frac{P-2 L}{2}=W
$$

33. $A=1 / 2(B+b) h$

$$
\begin{aligned}
2(A) & =2[1 / 2(B+b) h] & & \text { [Multiply both sides by 2.] } \\
2 A & =(B+b) h & & \\
2 A & =B h+b h & & \text { [Use the Distributive Property.] } \\
2 A-b h & =B h+b h-b h & & \text { [Subtract bh from both sides.] }
\end{aligned}
$$

NOT FOR SALE

$$
2 A-b h=B h
$$

$$
\frac{2 A-b h}{h}=B
$$

[Divide both sides by h to solve for B.]
34. $A=1 / 2(B+b) h$

$$
\begin{aligned}
2(A) & =2[1 / 2(B+b) h] & & {[\text { Multiply both sides by } 2 .] } \\
2 A & =(B+b) h & & \\
\frac{2 A}{B+b} & =h & & \text { [Divide both sides by }(B+b) \text { to solve for } h .]
\end{aligned}
$$

35. $2 x+3 y=6$

$$
\begin{aligned}
2 x+3 y-2 x & =6-2 x \\
3 y & =6-2 x
\end{aligned}
$$

$$
y=2-2 / 3 x \quad[\text { Divide both sides by } 3 \text { to solve for } y .]
$$

36. $2 x-y=10$

$$
\begin{aligned}
2 x-y-2 x & =10-2 x & & \text { [Subtract } 2 x \text { from both sides.] } \\
-y & =10-2 x & & \\
y & =-10+2 x & & {[\text { Divide both sides by }-1 .] }
\end{aligned}
$$

37. $A=\frac{x+y}{2}$

$$
\begin{aligned}
2 A & =x+y & & \text { [Multiply both sides by 2.] } \\
2 A-y & =x+y-y & & \text { [Subtract } y \text { from both sides.] } \\
2 A-y & =x & &
\end{aligned}
$$

[Subtract $2 x$ from both sides.]
38. $A=\frac{x+y}{2}$

$$
2 A=x+y
$$

[Multiply both sides by 2.]
$2 A-x=x+y-x$
$2 A-x=y$
[Subtract x from both sides.]
39.

$$
\begin{aligned}
F & =\frac{9}{5} C+32 & & \\
5 F & =9 C+160 & & \text { [Multiply through by 5.] } \\
5 F-160 & =9 C+160-160 & & \text { [Subtract } 160 \text { from both sides.] } \\
5 F-160 & =9 C & & \\
\frac{5}{9} F-\frac{160}{9} & =C & & \text { [Divide both sides by 9.] } \\
\frac{5}{9}(F-32) & =C & & \text { [Factor out } \left.\frac{5}{9} .\right]
\end{aligned}
$$

40. $\quad C=\frac{5}{9}(F-32)$

$$
\begin{aligned}
C & =\frac{5}{9} F-\frac{160}{9} & & \text { [Use the distributive proper } \\
C+\frac{160}{9} & =\frac{5}{9} F-\frac{160}{9}+\frac{160}{9} & & \text { [Add } \frac{160}{9} \text { to both sides.] } \\
C+\frac{160}{9} & =\frac{5}{9} F & & \\
\frac{9}{5} C+32 & =F & & \text { [Multiply through by } \left.\frac{9}{5} .\right]
\end{aligned}
$$

41. $\quad \mathrm{BMI}=\frac{W}{H^{2}} \cdot 703=\frac{140}{73^{2}} \cdot 703=18.4687 \ldots=18.5$, Normal
42. $\quad \mathrm{BMI}=\frac{W}{H^{2}} \cdot 703=\frac{160}{60^{2}} \cdot 703=31.2444 \ldots=31.2$, Obese

Practice Set 1-3

1. $\frac{45 \mathrm{~min}}{2 h r}=\frac{45 \mathrm{~min}}{120 \min }=\frac{3}{8}$
2. $\frac{1 \mathrm{hr}}{35 \mathrm{~min}}=\frac{60 \mathrm{~min}}{35 \mathrm{~min}}=\frac{12}{7}$
3. $\frac{4 \text { in }}{4 f t}=\frac{4 \text { in }}{48 \text { in }}=\frac{1}{12}$
4. $\frac{3 \mathrm{ft}}{60 \mathrm{in}}=\frac{36 \text { in }}{60 \text { in }}=\frac{3}{5}$
5. $\frac{6 f t}{3 y d}=\frac{6 f t}{9 f t}=\frac{2}{3}$
6. $\frac{2 y d}{12 f t}=\frac{6 f t}{12 f t}=\frac{1}{2}$
7. $\frac{8 \text { weeks }}{16 \text { days }}=\frac{56 \text { days }}{16 \text { days }}=\frac{7}{2}$
8. $\frac{5 \text { days }}{1 \text { week }}=\frac{5 \text { days }}{7 \text { days }}=\frac{5}{7}$
9. $\frac{25 \mathrm{~mL}}{1 L}=\frac{25 \mathrm{~mL}}{1000 \mathrm{~mL}}=\frac{1}{40}$
10. $\frac{2400 \mathrm{~mL}}{2 \mathrm{~L}}=\frac{2400 \mathrm{~mL}}{2000 \mathrm{~mL}}=\frac{6}{5}$
11. $\frac{304 \text { miles }}{9.5 \text { gal }}=32 \mathrm{mi} . / \mathrm{gal}$.
12. $\frac{450 \text { miles }}{20 \mathrm{gal}}=22.5 \mathrm{mi} . / \mathrm{gal}$.
13. $\frac{\$ 3.50}{10 \mathrm{~min}}=\$ 0.35 / \mathrm{min}$.
14. $\frac{\$ 86.40}{720 k W h}=\$ 0.12 / \mathrm{kWh}$
15. $\frac{\$ 48}{10 \text { days }}=\$ 4.80 /$ day
16. $\frac{\$ 340}{40 h r}=\$ 8.50 / h r$
17. $\frac{24 \mathrm{lb}}{15 \text { people }}=1.6 \mathrm{lb} . /$ person
18. $\frac{5.5 \mathrm{lb}}{12 \text { people }}=0.458 \overline{3} \mathrm{lb} . /$ person
19. $\frac{x}{5}=\frac{3}{4}$

$$
\begin{array}{rlr}
4 \mathrm{x} & =(3)(5) & \text { [cross-multiplication property] } \\
4 \mathrm{x} & =15 & \\
\mathrm{x} & =\frac{15}{4} &
\end{array}
$$

20. $\frac{9}{2 x}=\frac{6}{4}$

$$
\begin{array}{rlr}
(4)(9) & =(2 x)(6) \quad \text { [cross-multiplication property] } \\
36 & =12 x & \\
3 & =x &
\end{array}
$$

21. $\frac{30}{126}=\frac{5}{3 x}$

$$
\begin{aligned}
(3 \mathrm{x})(30) & =5(126) & \text { [cross-multiplication property] } \\
90 \mathrm{x} & =630 & \\
x & =7 &
\end{aligned}
$$

22. $\frac{2 x}{7}=\frac{8}{14}$

$$
\begin{aligned}
(2 \mathrm{x})(14) & =(7)(8) \quad \text { [cross-multiplication property] } \\
28 \mathrm{x} & =56 \\
x & =2
\end{aligned}
$$

23. $\frac{3 x+6}{35}=\frac{2 x-18}{5}$

$$
\begin{aligned}
5(3 x+6) & =35(2 x-18) & & \text { [cross-multiplication property] } \\
15 x+30 & =70 x-630 & & \text { [distributive property] }
\end{aligned}
$$ [distributive property]

$$
15 x+30-70 x=70 x-630-70 x
$$

$$
-55 x+30=-630
$$

$$
-55 x+30-30=-630-30
$$

$$
-55 x=-660
$$

$$
x=12
$$

24. $\frac{x-2}{7}=\frac{2 x+2}{28}$

$$
\begin{aligned}
28(\mathrm{x}-2) & =7(2 \mathrm{x}+2) & & \text { [cross-multiplication property] } \\
28 \mathrm{x}-56 & =14 \mathrm{x}+14 & & \text { [distributive property] } \\
28 \mathrm{x}-56-14 \mathrm{x} & =14 \mathrm{x}+14-14 \mathrm{x} & & \\
14 \mathrm{x}-56 & =14 & &
\end{aligned}
$$

$$
\begin{aligned}
14 x & =70 \\
x & =5
\end{aligned}
$$

25. $\frac{15}{18}=\frac{x-1}{x}$

$$
\begin{aligned}
(15)(\mathrm{x}) & =18(\mathrm{x}-1) & & \text { [cross-multiplication property] } \\
15 \mathrm{x} & =18 \mathrm{x}-18 & & \text { [distributive property] } \\
15 \mathrm{x}-18 \mathrm{x} & =18 \mathrm{x}-18-18 \mathrm{x} & & \\
-3 \mathrm{x} & =-18 & & \\
\mathrm{x} & =6 & &
\end{aligned}
$$

26. $\frac{3}{x+4}=\frac{5}{2 x+3}$

$$
\begin{aligned}
3(2 x & +3) & =5(x+4) & \\
6 x & +9 & =5 x+20 & \\
6 x+9-5 x & =5 x+20-5 x & & \\
x+9 & =20 & & \\
x+9-9 & =20-9 & & \\
x & =11 & &
\end{aligned}
$$

27. $\frac{3}{x+1}=\frac{18}{9 x-3}$

$$
3(9 x-3)=18(x+1)
$$

[cross-multiplication property]

$$
27 x-9=18 x+18
$$

$$
27 x-9-18 x=18 x+18-18 x
$$

$$
9 x-9=18
$$

$$
9 x-9+9=18+9
$$

$$
9 x=27
$$

$$
x=3
$$

28. $\frac{x+8}{6}=\frac{2 x-8}{3}$

$$
\begin{aligned}
3(\mathrm{x}+8) & =6(2 \mathrm{x}-8) \\
3 \mathrm{x}+24 & =12 \mathrm{x}-48 \\
3 \mathrm{x}+24-12 \mathrm{x} & =12 \mathrm{x}-48-12 \mathrm{x} \\
-9 \mathrm{x}+24 & =-48 \\
-9 \mathrm{x}+24-24 & =-48-24 \\
-9 \mathrm{x} & =-72 \\
\mathrm{x} & =8
\end{aligned}
$$

29. Unit rate equals cost divided by the number of square feet.

$$
\$ 2235 \div 1500 \mathrm{ft}^{2}=\$ 1.49 / \mathrm{ft}^{2}
$$

30. Unit rate equals cost divided by the number of yards.

$$
\$ 47.80 \div 4 \mathrm{yd}=\$ 11.95 / \mathrm{yd}
$$

31. Cost per ounce $=\$ 8.99 \div 16 \mathrm{oz}=\$ 0.561875$ per ounce
32. Cost per can $=\$ 7.14 \div 6$ cans $=\$ 1.19$ per can
33. Brand X: $\$ 1.49 \div 8 \mathrm{oz}=\$ 0.18625 /$ ounce

Brand Z: $\$ 2.12 \div 12$ oz $=\$ 0.1766 \ldots$. $/$ ounce
Brand Z is the better buy because it costs less per ounce.
34. five 2-L colas: $\$ 4.95 \div 5=\$ 0.99 /$ bottle
three 2-L colas: $\$ 2.99 \div 3=\$ 0.99666$.//bottle
Purchasing five 2-L colas for $\$ 4.95$ is a better buy.
35. Let $\frac{120 \mathrm{cal}}{3 / 4 \text { cup }}=\frac{x}{1 \text { cup }}$.

$$
(1)(120)=3 / 4 \mathrm{x}
$$

$$
120=3 / 4 x
$$

160 calories $=x$
[Cross multiply.]
[Multiply both sides by 4/3.]
36. Let $\frac{8 \mathrm{oz}}{90 \mathrm{cal}}=\frac{28 \mathrm{oz}}{x}$.

$$
\begin{aligned}
8 x & =(90)(28) \\
8 x & =2520 \\
x & =315 \text { calories }
\end{aligned}
$$

37. Let $\frac{2.5 \text { dozen }}{1.25 \text { cups }}=\frac{x \text { dozen }}{3 \text { cups }}$.

$$
\begin{aligned}
(3)(2.5) & =1.25 \mathrm{x} & \text { [Cross multiply.] } \\
7.5 & =1.25 \mathrm{x} & \\
6 & =x &
\end{aligned}
$$

Answer is 6 dozen or 72 muffins.
38. If each of 30 students has 2 cookies, then 60 cookies are needed. $60 \div 12=5$ doz.

$$
\begin{array}{rlr}
\text { Let } \begin{aligned}
\frac{3 \text { dozen }}{2.5 \text { cups }} & =\frac{5 \text { dozen }}{x} \\
3 \mathrm{x} & =(5)(2.5) \\
3 \mathrm{x} & =12.5 \\
\mathrm{x} & =4.16666 \ldots=4 \frac{1}{6} \mathrm{cups}
\end{aligned} & \\
& \text { [Cross multiply.] }
\end{array}
$$

39. Let $\frac{5 f t 4 i n}{10.5 f t}=\frac{x}{20 f t}$. Convert the measurements to inches as follows: $5 \mathrm{ft} 4 \mathrm{in}=5(12)$
$+4=64$ inches; $10.5 \mathrm{ft}=10.5 \times 12 \mathrm{in}=126$ inches; $20 \mathrm{ft}=20 \times 12 \mathrm{in}=240$ inches.
Now substitute:

$$
\begin{gathered}
\frac{64 \text { in }}{126 \text { in }}=\frac{x}{240 \text { in }} \\
(64)(240)=126 x
\end{gathered}
$$

$$
15360=126 x
$$

121.9 inches $=x$

Converting to feet and inches: 121.9 inches $\div 12 \mathrm{in} / \mathrm{ft}=10 \mathrm{ft} .1 .9 \mathrm{in}$.
40. Let $\frac{5 f t 10 \text { in }}{8 f t 9}=\frac{x}{14 f t}$. Convert the measurements to inches as follows: 5 ft 10 in $=5(12)$ $+10=70$ inches, $8 \mathrm{ft} 9 \mathrm{in}=8(12)+9=105$ inches, and $14 \mathrm{ft}=14(12)=168$ inches.
Now substitute:

$$
\begin{array}{rlr}
\frac{70 \text { in }}{105 \text { in }} & =\frac{x}{168 \text { in }} . & \\
(70)(168) & =105 x \\
11760 & =105 x & \text { [Cross multiply.] } \\
112 \text { inches } & =x & \\
\text { (112 inches } & =9 \text { feet } 4 \text { inches) } &
\end{array}
$$

41. Let $\frac{1.8 \mathrm{~A}}{18 V}=\frac{5.4 \mathrm{~A}}{x}$.

$$
\begin{aligned}
(18)(5.4) & =1.8 \mathrm{~A} \\
97.2 & =1.8 \mathrm{~A} \\
54 \mathrm{~V} & =\mathrm{A}
\end{aligned}
$$

42. Let $\frac{10 \mathrm{~A}}{50 \mathrm{~V}}=\frac{25 \mathrm{~A}}{x}$

$$
\begin{aligned}
10 \mathrm{x} & =(25)(50) \\
10 \mathrm{x} & =1250 \\
\mathrm{x} & =125 \mathrm{~V}
\end{aligned} \quad \text { [Cross multiply.] }
$$

43. Let $\frac{110 \mathrm{lb}}{19.4 \mathrm{lb}}=\frac{200 \mathrm{lb}}{x}$

$$
\begin{aligned}
110 \mathrm{x} & =(19.4)(200) \quad \text { [Cross multiply.] } \\
110 \mathrm{x} & =3880 \quad \\
\mathrm{x} & =35.2727 \ldots \text { or approximately } 35.3 \mathrm{lb} .
\end{aligned}
$$

44. Let $\frac{110 \mathrm{lb}}{19.4 \mathrm{lb}}=\frac{155 \mathrm{lb}}{x}$

$$
\begin{aligned}
110 \mathrm{x} & =(19.4)(155) \quad \text { [Cross multiply.] } \\
110 \mathrm{x} & =3007 \\
\mathrm{x} & =27.336363 \ldots \text { or approximately } 27.3 \mathrm{lb} .
\end{aligned}
$$

45. Let $\frac{10 \mathrm{lb}}{400 \mathrm{ft}^{2}}=\frac{x}{500 \mathrm{ft}^{2}}$

$$
\begin{aligned}
(10)(500) & =400 \mathrm{x} & \text { [Cross multiply.] } \\
5000 & =400 \mathrm{x} &
\end{aligned}
$$

$$
12.5 \mathrm{lb}=\mathrm{x}
$$

46. Let $\frac{20}{1}=\frac{256 \mathrm{oz}}{x}$

$$
\begin{aligned}
& 20 \mathrm{x}=(256)(1) \\
& 20 \mathrm{x}=256
\end{aligned}
$$

[2 gallons $=256 \mathrm{oz}$.]
[Cross multiply.]

$$
\mathrm{x}=12.8 \mathrm{oz}
$$

47. Let $\frac{\$ 240}{1200 \text { words }}=\frac{x}{1500 \text { words }}$.

$$
\begin{aligned}
(240)(1500) & =1200 \mathrm{x} \\
360,000 & =1200 \mathrm{x} \\
\$ 300 & =\mathrm{x}
\end{aligned}
$$

[Cross multiply.]
48. Let $\frac{1500 \text { doughnuts }}{9 \text { hours }}=\frac{300 \text { doughnuts }}{x}$

$$
\begin{aligned}
1500 \mathrm{x}=(9)(300) & \text { [Cross multiply.] } \\
1500 \mathrm{x} & =2700 \\
x=1.8 \mathrm{hr} . &
\end{aligned}
$$

49. Let $\frac{1 \text { adult }}{15 \text { children }}=\frac{3 \text { adults }}{x}$

$$
x=(3)(15) \quad[\text { Cross multiply.] }
$$

50. Let $\frac{1 \text { adult }}{6 \text { infants }}=\frac{x}{15 \text { infants }}$

$$
15=6 x
$$

[Cross multiply.]
2.5 adults $=\mathrm{x}$

Therefore, 3 adults are needed for 15 infants.
51. Let $\frac{1 \text { inch }}{8 \text { feet }}=\frac{2.75 \text { inches }}{x}$

$$
\begin{array}{ll}
x=(8)(2.75) & \text { [Cross multiply.] } \\
x=22 \text { feet } &
\end{array}
$$

[Cross multiply.]
Dimensions are $22 \mathrm{ft} \times 15.5 \mathrm{ft}$
52. Let $\frac{1 \text { inch }}{10 \text { miles }}=\frac{x}{185 \text { miles }}$

$$
\begin{aligned}
(1)(185) & =10 \mathrm{x}
\end{aligned} \quad \text { [Cross multiply.] }
$$

53. Let $\frac{\text { Mach } 1}{761.2 \mathrm{mph}}=\frac{\text { Mach } 3.1}{x}$

$$
\begin{aligned}
& 1 \mathrm{x}=(3.1)(761.2) \quad \text { [Cross multiply.] } \\
& \mathrm{x}=2359.72 \mathrm{mph}
\end{aligned}
$$

54. Let $\frac{\text { Mach } 1}{761.2 \mathrm{mph}}=\frac{x}{1903 \mathrm{mph}}$
$761.2 \mathrm{x}=(1)(1903)$
[Cross multiply.]
$x=2.5 \quad$ (Mach 2.5)
55. Let $\frac{400 \mathrm{ft}}{1 \text { day }}=\frac{1000 \mathrm{ft}}{x}$

$$
\begin{aligned}
(1)(1000) & =400 \mathrm{x} \\
1000 & =400 \mathrm{x} \\
2.5 \text { days } & =\mathrm{x}
\end{aligned}
$$

56. Let $\frac{8 \text { sq } / \text { day }}{1 \text { roofer }}=\frac{x}{2 \text { roofers }}$

$$
(2)(8 \text { sq/day })=x
$$

[Cross multiply.]
16 sq/day = x
Since 2 roofers can do 16 squares per day, they can do 32 squares in 2 days.
57. Let $\frac{40 \mathrm{mg}}{1 \mathrm{~mL}}=\frac{60 \mathrm{mg}}{x}$.

$$
\begin{array}{rlr}
40 \mathrm{x} & =(1)(60) & \text { [Cross multiply.] } \\
40 \mathrm{x} & =60 & \\
\mathrm{x} & =1.5 \mathrm{~mL} &
\end{array}
$$

58. Let $\frac{100 \mathrm{mg}}{1 \mathrm{~kg}}=\frac{x}{9.3 \mathrm{~kg}}$.

$$
(100)(9.3)=1 x
$$

[Cross multiply.]
$930 \mathrm{mg}=\mathrm{x}$
59. Let $\frac{1.8 \mathrm{mi}}{30 \mathrm{~min}}=\frac{x}{45 \mathrm{~min}}$
$(1.8)(45)=30 \mathrm{x}$
[Cross multiply.]
2.7 miles $=x$

INSTR
60. Let $\frac{1 \mathrm{mph}}{1.609 \mathrm{kph}}=\frac{x}{98 \mathrm{kph}}$

$$
\begin{aligned}
(1)(98) & =1.609 \mathrm{x} \\
98 & =1.609 \mathrm{x} \\
60.9 \mathrm{mph} & =\mathrm{x}
\end{aligned}
$$

Practice Set 1-. 4

1. $2 \mathrm{x}+6$
2. $2 \mathrm{x}-3$
3. $7 x-2$
4. $3+4 x$
5. $3(4+x)$
6. $2(x-6)$
7. $\frac{1}{3} x-5$
8. $x-\frac{3}{4} x$
9. Let Bill's salary $=x$. Then, Ann's salary $=x+\$ 5000$
10. Let Monday's attendance $=x$. Then, Friday's is $1 / 2 x+3$
11. Let the width $=x$. Then, the length $=2 x+5$.
12. Let the short rod $=x$. Then, each subsequent rod is 1 inch longer: $x+1$ and $x+2$.
13. $5 x+5=2 x-10$
$5 x+5-2 x=2 x-10-2 x$
$3 x+5=-10$
$3 x+5-5=-10-5$

$$
3 x=-15
$$

$$
x=-5
$$

14. $8 x-16=80$

$$
\begin{aligned}
8 x-16+16 & =80+16 \\
8 x & =96 \\
x & =12
\end{aligned}
$$

15. Emily has saved x. Elena has saved $2 x$ (twice as much).
$x+2 x=72$
$3 x=72$
x = 24 so Emily has saved $\$ 24$ and Elena has saved $2(\$ 24)=\$ 48$.
INSTRUCTƠR USE ONLY
16. Let the lower grade $=x$. The higher grade is $x+56$.

$$
\begin{aligned}
\mathrm{x}+(\mathrm{x}+56) & =128 \\
2 \mathrm{x}+56 & =128 \\
2 \mathrm{x}+56-56 & =128-56 \\
2 \mathrm{x} & =72 \\
\mathrm{x} & =36 \text { so the lower grade is } 36 \text { and the higher is } 36+56=92 .
\end{aligned}
$$

17. Let $x=$ the shorter piece. The longer piece will be $2 x$.

$$
\begin{aligned}
x+2 x & =60 \text { meters } \\
3 x & =60 \text { meters } \\
x & =20 \text { meters }
\end{aligned}
$$

The shorter piece is 20 meters long and the longer piece is $2(20)=40$ meters long.
18. Let Joshua's age $=x$ and Mario's age be $x+18$.

$$
\begin{aligned}
x+(x+18) & =46 \\
2 x+18 & =46 \\
2 x+18-18 & =46-18 \\
2 x & =28 \\
x & =14
\end{aligned}
$$

So, Joshua is 14 years old and Mario is $14+18=32$ years old.
19. Using the definition of an average, let x equal the missing grade.

$$
\begin{aligned}
\frac{88+91+95+x}{4} & =90 \\
88+91+95+x & =4(90) \\
274+x & =360 \\
274-274+x & =360-274 \\
x & =86
\end{aligned}
$$

In order to have a 90 average, she must make 86 on the last test.
20. Using the definition of an average, let x equal the missing grade.

$$
\begin{aligned}
\frac{60+92+78+89+x}{5} & =84 \\
60+92+78+89+x & =5(84) \\
319+x & =420 \\
319-319+x & =420-319 \\
x & =101
\end{aligned}
$$

In order to have a B average, she must make 101 on the last test. On a normal grading scale, this will be impossible.
21. Let $\mathrm{x}=$ the number of kilowatt-hours. Write the equation and solve.

$$
\begin{aligned}
\$ 20.00+\$ 0.14 \mathrm{x} & =\$ 85.78 \\
20.00-20.00+0.14 \mathrm{x} & =85.78-20.00 \\
0.14 \mathrm{x} & =65.78
\end{aligned}
$$

$$
x=\frac{65.78}{0.14}=470 k W h \quad(\text { rounded })
$$

22. Let $x=$ number of "out of area" minutes.

$$
\begin{aligned}
\$ 29.95+\$ 9.95+\$ 0.40 \mathrm{x} & =\$ 69.90 \\
39.90+0.40 \mathrm{x} & =69.90 \\
39.90-39.90+0.40 \mathrm{x} & =69.90-39.90 \\
0.40 \mathrm{x} & =30 \\
\mathrm{x} & =75
\end{aligned}
$$

She was charged for 75 "out of area" minutes.
23. Let $x=$ the taxi fare. Since $1 / 11$ of a mile costs $\$ 0.20$, the cost of one mile $=\$ 0.20 \times$ 11 = \$2.20.

$$
x=\$ 3.20+18(\$ 2.20 / \mathrm{mile})+\$ 1.20=\$ 44.00
$$

24. Let $x=$ the taxi fare. Since $1 / 5$ of a mile costs $\$ 0.40$, the cost of one mile $=\$ 0.40 \times$ $5=\$ 2.00$.

$$
x=\$ 2.50+16(\$ 2.00 / \mathrm{mile})=\$ 34.50
$$

25. The opponent scored x points in the game. Mighty Mites scored 39 points. This amount (39) is $2 \mathrm{x}-1$.

$$
\begin{aligned}
2 \mathrm{x}-1 & =39 \\
2 \mathrm{x}-1+1 & =39+1 \\
2 \mathrm{x} & =40 \\
\mathrm{x} & =20
\end{aligned}
$$

The opponent scored 20 points.
26. Let the number of games Jim won $=x$ and the number that Gaylord won $=x+99$.

$$
\begin{aligned}
\mathrm{x}+(\mathrm{x}+99) & =529 \\
2 \mathrm{x}+99 & =529 \\
2 \mathrm{x}+99-99 & =529-99 \\
2 \mathrm{x} & =430 \\
\mathrm{x} & =215
\end{aligned}
$$

Jim won 215 games and Gaylord won $215+99=314$ games.
27. Let the integers be $x, x+1$ and $x+2$. Write the equation for the sum and solve.

$$
\begin{aligned}
x+(x+1)+(x+2) & =87 \\
3 x+3 & =87 \\
3 x+3-3 & =87-3 \\
3 x & =84 \\
x & =28
\end{aligned}
$$

The integers are $x=28, x+1=29$ and $x+2=30$.
28. Let the integers be $x, x+1$ and $x+2$. Write the equation for the sum and solve.

$$
x+(x+1)+(x+2)=100
$$

$$
\begin{aligned}
3 x+3 & =100 \\
3 x+3-3 & =100-3 \\
3 x & =97 \\
x & =32.333 \ldots
\end{aligned}
$$

Since this number is not an integer, there is not a set of consecutive integers that satisfies the requirements of this problem.
29. Let the odd integers be $x, x+2$, and $x+4$. Write the equation for the sum and solve.

$$
\begin{aligned}
\mathrm{x}+(\mathrm{x}+2)+(\mathrm{x}+4) & =-273 \\
3 \mathrm{x}+6 & =-273 \\
3 \mathrm{x}+6-6 & =-273-6 \\
3 \mathrm{x} & =-279 \\
\mathrm{x} & =-93
\end{aligned}
$$

The three integers are $\mathrm{x}=-93, \mathrm{x}+2=-91$, and $\mathrm{x}+4=-89$.
30. Let the odd integers be $x, x+2$, and $x+4$. Write the equation for the sum and solve.

$$
\begin{aligned}
x+(x+2)+(x+4) & =1503 \\
3 x+6 & =1503 \\
3 x+6-6 & =1503-6 \\
3 x & =1497 \\
x & =499
\end{aligned}
$$

The three integers are $x=499, x+2=501$, and $x+4=503$.
31. Let $x=$ the value of the lot. Then, $6.5 x=$ the value of the house.

$$
\begin{aligned}
x+6.5 x & =\$ 175,000 \\
7.5 x & =\$ 175,000 \\
x & =\$ 23,333.33
\end{aligned}
$$

So, the lot is worth approximately $\$ 23,333$ and the house is worth about $\$ 151,667$.
32. Let $x=$ the value of the lot. Then, $7 x=$ the value of the house.

$$
\begin{aligned}
x+7 x & =\$ 164,000 \\
8 x & =\$ 164,000 \\
x & =\$ 20,500
\end{aligned}
$$

So, the lot is worth approximately $\$ 22,500$ and the house is worth about $\$ 143,500$.
33. $\mathrm{x}=\frac{949 \text { yen }}{146 \text { yen } / \text { dollar }}=\$ 6.50$.
34. $\mathrm{x}=\frac{65 \text { pounds }}{0.549 \text { pounds } / \text { dollar }}=\$ 118.40$
35. time $=\frac{\text { distance }}{\text { speed }}=\frac{500 \mathrm{mi}}{170.265 \mathrm{mi} / \mathrm{hr}}=2.936598831 \mathrm{hr}=$ about 2 hr 56 min
36. $\mathrm{x}=500$ miles $\div 74.602 \mathrm{mph}=6.702$ hours. Convert 0.702 to minutes by multiplying $0.702(60)=42.12$ to give the answer of approximately 3 hours and 42 minutes.
37. Let the number of males and females at the beginning of the semester $=x$. If 8 males drop the class, there are $x-8$ males remaining. Now the number of females is twice the number of males remaining.

$$
\begin{aligned}
x & =2(x-8) \\
x & =2 x-16 \\
x-2 x & =2 x-16-2 x \\
-x & =-16 \\
x & =16
\end{aligned}
$$

There were 16 males and 16 females at the beginning of the semester.
38. Let $\mathrm{x}=$ the number of Democrats and the number of Republicans in the Senate.

$$
\begin{aligned}
x+x+2 & =100 \\
2 x+2 & =100 \\
2 x+2-2 & =100-2 \\
2 x & =98 \\
x & =49
\end{aligned}
$$

There were 49 Democrats and 49 Republicans in the Senate.
39. Let $\mathrm{x}=$ the number of bags of apples.

$$
\begin{gathered}
5 \mathrm{x}+2 \mathrm{x}=252 \\
7 \mathrm{x}=252 \\
\mathrm{x}=36
\end{gathered}
$$

There are 36 bags containing 5 lb . of apples and 36 bags containing 2 lb . of apples.
40. Let $x=$ the number of seats in Theater $B, x+150=$ the number of seats in Theater A.

$$
\begin{aligned}
(\mathrm{x}+150)+\mathrm{x}+270 & =800 \\
2 \mathrm{x}+420 & =800 \\
2 \mathrm{x}+420-420 & =800-420 \\
2 \mathrm{x} & =380 \\
\mathrm{x} & =190
\end{aligned}
$$

The number of seats in Theater A is $\mathrm{x}+150=190+150=340$.
41. Let $x=$ profit from the automotive division. Then $x-273$ represents the profit from financial services.

$$
\begin{aligned}
\mathrm{x}+(\mathrm{x}-273 \text { million }) & =483 \text { million } \\
2 \mathrm{x}-273 \text { million } & =483 \text { million } \\
2 \mathrm{x}-273 \text { million }+273 \text { million } & =483 \text { million }+273 \text { million } \\
2 \mathrm{x} & =756 \text { million } \\
\mathrm{x} & =378 \text { million }
\end{aligned}
$$

The profit from the automotive division was 378 million and from financial services
INST
RUCT
O"R

ONL
was 378 million -273 million $=105$ million.
42. Let $\mathrm{x}=$ salary of Palmisano and $\mathrm{x}-\$ 3.91$ million $=$ Moonvie's salary.

$$
\begin{gathered}
x+x-3.91 \text { million }=56.73 \text { million } \\
2 x-3.91 \text { million }+3.91 \text { million }=56.73 \text { million }+3.91 \text { million } \\
2 x=60.64 \text { million } \\
x=30.32 \text { million }
\end{gathered}
$$

Therefore, Palmisano made \$30.32 million and Moonvie made \$26.41 million in 2010.
43. Let $\mathrm{x}=$ attendance at the Ohio State game and $\mathrm{x}-1044=$ attendance at the Penn State game. Total attendance for the two teams in 2010 was 209,512.

$$
\begin{aligned}
x+x-1044 & =209,512 \\
2 x-1044 & =209,512 \\
2 x-1044+1044 & =209,512+1044 \\
2 x & =210,556 \\
x & =105,278
\end{aligned}
$$

Therefore, the attendance at the Ohio State game was 105,278 and the attendance at the Penn State game was 105,278-1044 = 104,234.
44. Let $\mathrm{x}=$ the middle-sized piece. The longest is 3 x and the shortest is $3 \mathrm{x}-23$. The total length of the pipe is 40 inches. Therefore,

$$
\begin{aligned}
3 \mathrm{x}+\mathrm{x}+3 \mathrm{x}-23 & =40 \\
7 \mathrm{x}-23 & =40 \\
7 \mathrm{x}-23+23 & =40+23 \\
7 \mathrm{x} & =63 \\
\mathrm{x} & =9
\end{aligned}
$$

Therefore, the middle sized piece is 9 in., the longest is $3(9)=27 \mathrm{in}$. and the shortest is $3 \mathrm{x}-23=3(9)-23=4 \mathrm{in}$.
45. Let $x=$ the original price of the radio. Savings $=15 \%$ of retail price or $0.15 x$.

$$
\begin{array}{r}
x-0.15 x=\$ 127.46 \\
0.85 x=\$ 127.46 \\
x=\$ 149.95
\end{array}
$$

The original price of the radio was $\$ 149.95$.
46. Let $x=$ the original price of the watch. Savings $=25 \%$ of retail price or $0.25 x$.

$$
\begin{aligned}
x-0.25 x & =\$ 168.75 \\
0.75 x & =\$ 168.75 \\
x & =\$ 225
\end{aligned}
$$

The original price of the watch was $\$ 225.00$.
47. Let $x=$ the wholesale price of the shoes. The markup amount is 65% times x.

$$
\begin{aligned}
x+0.65 x & =\$ 125.40 \\
1.65 x & =\$ 125.40 \\
x & =\$ 76
\end{aligned}
$$

The wholesale price of the shoes was $\$ 76.00$.

48. Let $\mathrm{x}=$ the wholesale price of the shoes. The markup amount is 40% times x .

$$
\begin{array}{r}
x+0.40 \mathrm{x}=\$ 63 \\
1.4 \mathrm{x}=\$ 63 \\
\mathrm{x}=\$ 45
\end{array}
$$

The wholesale price of the shoes was $\$ 45.00$.
49. Let $\mathrm{x}=$ Drema's contributions. The company's contributions $=20 \%$ of x .

$$
\begin{aligned}
x+0.20 x & =\$ 1200 \\
1.2 x & =\$ 1200 \\
x & =\$ 1000
\end{aligned}
$$

Drema deposited \$1000 into the account.
50. Let $\mathrm{x}=$ the population four years ago. The growth of the population is 5% of x .

$$
\begin{array}{r}
x+0.05 x=882 \\
1.05 x=882 \\
x=840
\end{array}
$$

There were 840 people in the town four years ago.
51. $\mathrm{BMI}=\frac{W}{H^{2}} \cdot 703=\frac{120}{60^{2}} \cdot 703=23.4333 \ldots=23.4$, Normal
52. . $\mathrm{BMI}=\frac{W}{H^{2}} \cdot 703=\frac{195}{67^{2}} \cdot 703=30.53798 \ldots=30.5$, Obese

Chapter 1 Review Problems

1.. $I=P r t$
$t=\frac{I}{\operatorname{Pr}} \quad$ [Divide both sides by Pr.]
2. $2 x+3 y=9$
$3 y=-2 x+9 \quad$ [Subtract $2 x$ from both sides.]

$$
y=-\frac{2}{3} x+3 \quad \text { [Divide all terms by 3.] }
$$

3. $C=\pi d$

$$
d=\frac{C}{\pi}
$$

[Divide both sides by π.]
4. $a+b+c=P$
$c=P-a-b \quad$ [Subtract a and b from both sides.]
5. $\frac{27 \mathrm{~min}}{3 \mathrm{hr}}=\frac{27 \mathrm{~min}}{180 \min }=\frac{3}{20}$
6. $\frac{4 \text { weeks }}{21 \text { days }}=\frac{28 \text { days }}{21 \text { days }}=\frac{4}{3}$
7. $\frac{6 \text { in }}{5 f t}=\frac{6 \text { in }}{60 \text { in }}=\frac{1}{10}$
8. $\frac{\$ 60}{5 h r}=\$ 12 /$ hour
9. $\frac{44 \text { bushels }}{8 \text { trees }}=5.5$ bushels/tree
10. $\frac{\$ 12.80}{3.5 \mathrm{lb}}=\$ 3.66 / \mathrm{lb}$.
11. $\frac{x}{3}=\frac{4}{7}$

$$
\begin{aligned}
7 \mathrm{x} & =12 \\
\mathrm{x} & =\frac{12}{7}
\end{aligned}
$$

12. $\frac{2}{3}=\frac{8}{2 x}$

$$
\begin{aligned}
4 \mathrm{x} & =24 \\
\mathrm{x} & =6
\end{aligned}
$$

13. $\frac{x-3}{8}=\frac{3}{4}$

$$
\begin{aligned}
4 \mathrm{x}-12 & =24 \\
4 \mathrm{x}-12+12 & =24+12 \\
4 \mathrm{x} & =36 \\
\mathrm{x} & =9
\end{aligned}
$$

14. $\frac{4 x-3}{7}=\frac{2 x-1}{3}$

$$
12 x-9=14 x-7
$$

$$
12 x-9-14 x=14 x-7-14 x
$$

$$
-2 x-9+9=-7+9
$$

$$
-2 x=2
$$

$$
x=-1
$$

15. $A=1 / 2 b h$. Substitute: $A=1 / 2(3 \mathrm{in})(4 \mathrm{in})=6 \mathrm{in}^{2}$
INSTRUCT
R USE
ONLY
16. Let $\frac{2400 L}{50 \min }=\frac{x}{30 \min }$. Cross multiply.

$$
72000=50 x
$$

1440 liters $=\mathrm{x}$
17. Let $\frac{3}{4}=\frac{x}{92}$. Cross multiply.
$276=4 \mathrm{x}$
69 dentists $=\mathrm{x}$
18. Let $x=$ total number of minutes that you talk. Then, $\$ 1.24+(x-4)(\$ 0.28)=\$ 3.76$

$$
\begin{aligned}
1.24+0.28 \mathrm{x}-1.12 & =3.76 \\
0.12+0.28 \mathrm{x} & =3.76 \\
0.12+0.28 \mathrm{x}-0.12 & =3.76-0.12 \\
0.28 \mathrm{x} & =3.64 \\
\mathrm{x} & =13 \quad \text { The call was } 13 \text { minutes long. }
\end{aligned}
$$

19. Let $x=$ number of minutes per month. Then, $\$ 50+\$ 0.36 x=\$ 99.68$.

$$
\begin{aligned}
0.36 x & =99.68-50 \\
0.36 x & =49.68 \\
x & =138 \text { minutes }
\end{aligned}
$$

20. Let $\mathrm{x}=$ labor time (per hour). Then, $\$ 40+\$ 30 \mathrm{x}=\$ 115$

$$
\begin{aligned}
40+30 \mathrm{x}-40 & =115-40 \\
30 \mathrm{x} & =75 \\
\mathrm{x} & =2.5 \text { hours }
\end{aligned}
$$

21. Let the shorter piece be x and the longer be $x+3$. Then, $x+(x+3)=33$

$$
\begin{aligned}
2 \mathrm{x}+3 & =33 \\
2 \mathrm{x}+3-3 & =33-3 \\
2 \mathrm{x} & =30 \\
\mathrm{x} & =15 \text { in (short piece) and } \mathrm{x}+3=15+3=18 \text { in (long piece) }
\end{aligned}
$$

22. Let the short piece $=x$, the middle-sized piece $=x+14$, and the long piece $=3 x$.

$$
\begin{aligned}
& \text { Then, } \mathrm{x}+(\mathrm{x}+14)+3 \mathrm{x}=79 \\
& 5 \mathrm{x}+14=79 \\
& 5 \mathrm{x}+14-14=79-14 \\
& 5 \mathrm{x}=65 \\
& \mathrm{x}=13 \mathrm{~cm} \text { (short) } \\
& \mathrm{x}+14=(13)+14=27 \mathrm{~cm} \text { (middle) } \\
& 3 \mathrm{x}=3(13)=39 \mathrm{~cm} \text { (long) }
\end{aligned}
$$

23. Let the calculator be x and the cassette player be $x+140$.

$$
\begin{array}{r}
\text { Then, } \mathrm{x}+(\mathrm{x}+140)=208 \\
2 \mathrm{x}+140=208
\end{array}
$$

$$
\begin{aligned}
2 \mathrm{x}+140-140 & =208-140 \\
2 \mathrm{x} & =68 \\
\mathrm{x} & =\$ 34.00 \text { which is the cost of the calculator }
\end{aligned}
$$

24. Let $n=$ the number of nickels and $2 n-2=$ the number of dimes.

Then, $n+(2 n-2)=52$.

$$
\begin{aligned}
3 n-2 & =52 \\
3 n-2+2 & =52+2
\end{aligned}
$$

$$
3 n=54
$$

$\mathrm{n}=18$ There are 18 nickels and 34 dimes in the bank for a total of \$4.30.
25. Use the formula $d=r t$ and substitute values.

$$
\begin{gathered}
182 \mathrm{mi}=(52 \mathrm{mph})(\mathrm{t}) \\
\mathrm{t}=3.5 \text { hours }
\end{gathered}
$$

26. $T=U N+F \quad$ Substitute the given values and solve.

$$
\begin{aligned}
\$ 16,750 & =\$ 15 \mathrm{~N}+\$ 2500 \\
16750-2500 & =15 \mathrm{~N}+2500-2500 \\
14250 & =15 \mathrm{~N} \\
\mathrm{~N} & =950 \text { units produced }
\end{aligned}
$$

26. First remove the parentheses by use of the distributive property, then add 2 to the 12 .

$$
2+3(2 x+4)=2+6 x+12=6 x+14
$$

28. $\quad 5 x+3=6 x$

$$
\begin{aligned}
5 x+3-5 x & =6 x-5 x \\
3 & =x
\end{aligned}
$$

29. for any triangle, $\mathrm{A}+\mathrm{B}+\mathrm{C}=180^{\circ}$

Let $\mathrm{A}=$ the first angle
The second angle, $\mathrm{B}=3 \mathrm{~A}$
The third angle, $\mathrm{C}=2 / 3(3 \mathrm{~A})=2 \mathrm{~A}$
$\mathrm{A}+3 \mathrm{~A}+2 \mathrm{~A}=180^{\circ}$
$6 \mathrm{~A}=180^{\circ}$
$\mathrm{A}=30^{\circ}, \mathrm{B}=3\left(30^{\circ}\right)=90^{\circ}, \mathrm{C}=2\left(30^{\circ}\right)=60^{\circ}$
30. First convert all the measurements to the same units, like inches.
$5 \mathrm{ft} 3 \mathrm{in}=63 \mathrm{in}, 10 \mathrm{ft} 6 \mathrm{in}=126 \mathrm{in}$, and $52 \mathrm{ft}=624 \mathrm{in}$
Now set up a proportion like: $\frac{63 i n}{126 i n}=\frac{x}{624 i n}$
Cross multiply:
$(63 i n)(624 i n)=(126 i n)(x)$
Divide by 126in:

$$
\mathrm{x}=312 \mathrm{in}=26 \mathrm{ft}
$$

Chapter 1 Test

1. $V=l w h$

$$
w=\frac{V}{l h}
$$

[Divide both sides by lh.]
2. $h=v t-16 t^{2}$

$$
\begin{array}{ll}
h+16 t^{2}=v t & \text { [Add } 16 t^{2} \text { to both sides.] } \\
\frac{h+16 t^{2}}{t}=v & \text { [Divide both sides by } t .]
\end{array}
$$

3. $\frac{4 \mathrm{hr}}{1 \text { day }}=\frac{4 \mathrm{hr}}{24 \mathrm{hr}}=\frac{1}{6}$
4. $\frac{10 \mathrm{ft}}{160 \mathrm{in}}=\frac{120 \mathrm{in}}{160 \mathrm{in}}=\frac{3}{4}$
5. $\frac{\$ 413.20}{4 \text { days }}=\$ 103.30 /$ day
6. $\frac{7.5 \mathrm{lb}}{6 \text { people }}=1.25 \mathrm{lb} /$ person
7. $\frac{50 \text { eggs }}{10 \text { chickens }}=5$ eggs / chicken
8. $\frac{7}{12}=\frac{3 x}{10}$

$$
70=36 x
$$

$$
\frac{70}{36}=\frac{35}{18}=x
$$

9. $\frac{x-4}{8}=\frac{2 x+3}{9}$

$$
9(x-4)=8(2 x+3)
$$

$$
9 x-36=16 x+24
$$

$$
9 x-36-16 x=16 x+24-16 x
$$

$$
-7 x-36=24
$$

$$
-7 x-36+36=24+36
$$

$$
-7 x=60
$$

$$
x=-\frac{60}{7}
$$

10. Let $x=$ defective bulbs. Then, $\frac{3}{85}=\frac{x}{510}$.

$$
\begin{aligned}
85 x & =1530 \\
x & =18 \text { bulbs }
\end{aligned}
$$

11. Let $x=$ parts produced. Then, $\frac{300 \text { parts }}{20 \mathrm{~min}}=\frac{x}{45 \mathrm{~min}}$.

$$
\begin{aligned}
& 20 x=13500 \\
& x=675 \text { parts }
\end{aligned}
$$

12. Given $P=2 L+2 W$. Substitute the given values into the formula.

$$
P=2(20 \mathrm{ft} .)+2(12 \mathrm{ft} .)=64 \mathrm{ft} .
$$

13. Company A Plan: $\$ 20+0.10 \mathrm{~m}$ (where $\mathrm{m}=$ miles driven)

Company B Plan: $\$ 10+0.30 \mathrm{~m}$
To find the number of miles where the two costs are equal, set these two expressions equal.

$$
\begin{aligned}
\$ 20+0.10 \mathrm{~m} & =\$ 10+0.30 \mathrm{~m} \\
20+0.10 \mathrm{~m}-0.10 \mathrm{~m} & =10+0.30 \mathrm{~m}-0.10 \mathrm{~m} \\
20 & =10+0.20 \mathrm{~m} \\
20-10 & =10+0.20 \mathrm{~m}-10 \\
10 & =0.20 \mathrm{~m} \\
50 & =\mathrm{m}, \text { so at } 50 \text { miles the costs are the same for both plans }
\end{aligned}
$$

14. Let the number of passengers on one ship $=x$.

The second ship holds twice as many passengers $=2 x$
Write the equation $\mathrm{x}+2 \mathrm{x}=2250$ and solve.

$$
\begin{aligned}
3 x & =2250 \\
x & =750 \text { so the smaller ship holds } 750 \text { passengers }
\end{aligned}
$$

15. Let Sarah's age be x. Then, Michelle's age is $5 x-10$. Write the equation and solve.

$$
\begin{aligned}
x+5 x-10 & =44 \\
6 x-10 & =44 \\
6 x-10+10 & =44+10 \\
6 x & =54 \\
x & =9 \quad \text { so Sarah is } 9 \text { years and Michelle is } 5(9)-10=35 \text { years. }
\end{aligned}
$$

16. Let the short board $=x$ and the longer one be $3 x+1$. Write the equation.

$$
\begin{aligned}
\mathrm{x}+3 \mathrm{x}+1 & =21 \\
4 \mathrm{x}+1 & =21 \\
4 \mathrm{x}+1-1 & =21-1 \\
4 \mathrm{x} & =20 \\
\mathrm{x} & =5 \text { so the short board is } 5 \mathrm{ft} . \text { and the longer is } 3(5)+1=16 \mathrm{ft} .
\end{aligned}
$$

17. $x+12.3 \%$ of x is now $\$ 2.83$ per gallon
$x+0.123 x=\$ 2.83$
$1.123 \mathrm{x}=\$ 2.83$
$\mathrm{x}=\$ 2.52$ per gallon
18. $\mathrm{P}-22 \%$ of P is now 28,000 people, after 8 years
$\mathrm{P}-0.22 \mathrm{P}=28,000$
$0.78 \mathrm{P}=28,000$
$\mathrm{P}=35,897.4359=35,898$ whole people 8 years ago
Now divide the amount of decrease in population by 8 years to get a rough average yearly decrease in population:
$35,898-28,000=7898$ people in 8 years
$7898 / 8=987.25$ or about 988 people per year decrease in population
19. The average of the four grades needs to equal at least 84 so:
$(75+82+80+x) / 4=84 \quad$ [multiply by 4$]$
$75+82++80+x=336$
$237+x=336$
$x=99$ is the least the student can make an have an overall average of 84
20. Let $\mathrm{L}=$ lot value, $\mathrm{H}=$ house value $=7.5 \mathrm{~L}$
$\mathrm{L}+7.5 \mathrm{~L}=\$ 152,000$
8.5L = \$152,000
$\mathrm{L}=\$ 17,882.35294$ or about $\$ 17,882$ for the lot
$\mathrm{H}=7.5 \mathrm{~L}=\$ 134,117.6471$ or about $\$ 138,118$ for the house
