Chapter 1

1.1

(a) One dimensional, multichannel, discrete time, and digital.
(b) Multi dimensional, single channel, continuous-time, analog.
(c) One dimensional, single channel, continuous-time, analog.
(d) One dimensional, single channel, continuous-time, analog.
(e) One dimensional, multichannel, discrete-time, digital.

1.2

(a) $f=\frac{0.01 \pi}{2 \pi}=\frac{1}{200} \Rightarrow$ periodic with $N_{p}=200$.
(b) $f=\frac{32 \pi}{105}\left(\frac{1}{2 \pi}\right)=\frac{1}{7} \Rightarrow$ periodic with $N_{p}=7$.
(c) $f=\frac{3 \pi}{2 \pi}=\frac{3}{2} \Rightarrow$ periodic with $N_{p}=2$.
(d) $f=\frac{3}{2 \pi} \Rightarrow$ non-periodic.
(e) $f=\frac{62 \pi}{10}\left(\frac{1}{2 \pi}\right)=\frac{31}{10} \Rightarrow$ periodic with $N_{p}=10$.

1.3

(a) Periodic with period $T_{p}=\frac{2 \pi}{5}$.
(b) $f=\frac{5}{2 \pi} \Rightarrow$ non-periodic.
(c) $f=\frac{1}{12 \pi} \Rightarrow$ non-periodic.
(d) $\cos \left(\frac{n}{8}\right)$ is non-periodic; $\cos \left(\frac{\pi n}{8}\right)$ is periodic; Their product is non-periodic.
(e) $\cos \left(\frac{\pi n}{2}\right)$ is periodic with period $N_{p}=4$
$\sin \left(\frac{\pi n}{8}\right)$ is periodic with period $N_{p}=16$
$\cos \left(\frac{\pi n}{4}+\frac{\pi}{3}\right)$ is periodic with period $N_{p}=8$
Therefore, $\mathrm{x}(\mathrm{n})$ is periodic with period $N_{p}=16$. (16 is the least common multiple of $4,8,16$).

1.4

(a) $w=\frac{2 \pi k}{N}$ implies that $f=\frac{k}{N}$. Let

$$
\begin{gathered}
\alpha=\operatorname{GCD} \text { of }(k, N) \text {, i.e., } \\
k=k^{\prime} \alpha, N=N^{\prime} \alpha .
\end{gathered}
$$

Then,

$$
\begin{gathered}
f=\frac{k^{\prime}}{N^{\prime}}, \text { which implies that } \\
N^{\prime}=\frac{N}{\alpha} .
\end{gathered}
$$

(b)

$$
\begin{aligned}
N & =7 \\
k & =01234567 \\
\operatorname{GCD}(k, N) & =71111117 \\
N_{p} & =17777771
\end{aligned}
$$

(c)

$$
\begin{aligned}
N & =16 \\
k & =0123456789101112 \ldots 16 \\
\operatorname{GCD}(k, N) & =16121412181214 \ldots 16 \\
N_{p} & =168164168162168164 \ldots 1
\end{aligned}
$$

1.5

(a) Refer to fig 1.5-1
(b)

Figure 1.5-1:

$$
\begin{aligned}
x(n) & =x_{a}(n T) \\
& =x_{a}\left(n / F_{s}\right) \\
& =3 \sin (\pi n / 3) \Rightarrow \\
f & =\frac{1}{2 \pi}\left(\frac{\pi}{3}\right) \\
& =\frac{1}{6}, N_{p}=6
\end{aligned}
$$

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G.

Figure 1.5-2:
(c)Refer to fig 1.5-2
$x(n)=\left\{0, \frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}}, 0,-\frac{3}{\sqrt{2}},-\frac{3}{\sqrt{2}}\right\}, N_{p}=6$.
(d) Yes.

$$
x(1)=3=3 \sin \left(\frac{100 \pi}{F_{s}}\right) \Rightarrow F_{s}=200 \text { samples } / \mathrm{sec}
$$

1.6

(a)

$$
\begin{aligned}
x(n) & =A \cos \left(2 \pi F_{0} n / F_{s}+\theta\right) \\
& =A \cos \left(2 \pi\left(T / T_{p}\right) n+\theta\right)
\end{aligned}
$$

But $T / T_{p}=f \Rightarrow x(n)$ is periodic if f is rational.
(b) If $\mathrm{x}(\mathrm{n})$ is periodic, then $\mathrm{f}=\mathrm{k} / \mathrm{N}$ where N is the period. Then,

$$
T_{d}=\left(\frac{k}{f} T\right)=k\left(\frac{T_{p}}{T}\right) T=k T_{p}
$$

Thus, it takes k periods $\left(k T_{p}\right)$ of the analog signal to make 1 period $\left(T_{d}\right)$ of the discrete signal. (c) $T_{d}=k T_{p} \Rightarrow N T=k T_{p} \Rightarrow f=k / N=T / T_{p} \Rightarrow \mathrm{f}$ is rational $\Rightarrow \mathrm{x}(\mathrm{n})$ is periodic.

1.7

(a) $F_{\max }=10 k H z \Rightarrow F_{s} \geq 2 F_{\max }=20 k H z$.
(b) For $F_{s}=8 k H z, F_{\text {fold }}=F_{s} / 2=4 k H z \Rightarrow 5 k H z$ will alias to 3 kHz .
(c) $\mathrm{F}=9 \mathrm{kHz}$ will alias to 1 kHz .

1.8

(a) $F_{\max }=100 \mathrm{kHz}, F_{s} \geq 2 F_{\max }=200 \mathrm{~Hz}$.
(b) $F_{\text {fold }}=\frac{F_{s}}{2}=125 \mathrm{~Hz}$. writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G.

1.9

(a) $F_{\max }=360 \mathrm{~Hz}, F_{N}=2 F_{\max }=720 \mathrm{~Hz}$.
(b) $F_{\text {fold }}=\frac{F_{s}}{2}=300 \mathrm{~Hz}$.
(c)

$$
\begin{aligned}
x(n) & =x_{a}(n T) \\
& =x_{a}\left(n / F_{s}\right) \\
& =\sin (480 \pi n / 600)+3 \sin (720 \pi n / 600) \\
x(n) & =\sin (4 \pi n / 5)-3 \sin (4 \pi n / 5) \\
& =-2 \sin (4 \pi n / 5) .
\end{aligned}
$$

Therefore, $w=4 \pi / 5$.
(d) $y_{a}(t)=x\left(F_{s} t\right)=-2 \sin (480 \pi t)$.

1.10

(a)

$$
\begin{aligned}
\text { Number of bits/sample } & =\log _{2} 1024=10 . \\
F_{s} & =\frac{[10,000 \mathrm{bits} / \mathrm{sec}]}{[10 \mathrm{bits} / \mathrm{sample}]} \\
& =1000 \mathrm{samples} / \mathrm{sec} . \\
F_{\text {fold }} & =500 \mathrm{~Hz} .
\end{aligned}
$$

(b)

$$
\begin{aligned}
F_{\max } & =\frac{1800 \pi}{2 \pi} \\
& =900 \mathrm{~Hz} \\
F_{N} & =2 F_{\max }=1800 \mathrm{~Hz}
\end{aligned}
$$

(c)

$$
\begin{aligned}
f_{1} & =\frac{600 \pi}{2 \pi}\left(\frac{1}{F_{s}}\right) \\
& =0.3 ; \\
f_{2} & =\frac{1800 \pi}{2 \pi}\left(\frac{1}{F_{s}}\right) \\
& =0.9 ;
\end{aligned}
$$

$$
\text { But } f_{2}=0.9>0.5 \Rightarrow f_{2}=0.1
$$

$$
\text { Hence, } x(n)=3 \cos [(2 \pi)(0.3) n]+2 \cos [(2 \pi)(0.1) n]
$$

(d) $\triangle=\frac{x_{\max -x} \min }{m-1}=\frac{5-(-5)}{1023}=\frac{10}{1023}$.

1.11

$$
\begin{aligned}
x(n) & =x_{a}(n T) \\
& =3 \cos \left(\frac{100 \pi n}{200}\right)+2 \sin \left(\frac{250 \pi n}{200}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =3 \cos \left(\frac{\pi n}{2}\right)-2 \sin \left(\frac{3 \pi n}{4}\right) \\
T^{\prime} & =\frac{1}{1000} \Rightarrow y_{a}(t)=x\left(t / T^{\prime}\right) \\
& =3 \cos \left(\frac{\pi 1000 t}{2}\right)-2 \sin \left(\frac{3 \pi 1000 t}{4}\right) \\
y_{a}(t) & =3 \cos (500 \pi t)-2 \sin (750 \pi t)
\end{aligned}
$$

1.12

(a) For $F_{s}=300 H z$,

$$
\begin{aligned}
x(n) & =3 \cos \left(\frac{\pi n}{6}\right)+10 \sin (\pi n)-\cos \left(\frac{\pi n}{3}\right) \\
& =3 \cos \left(\frac{\pi n}{6}\right)-3 \cos \left(\frac{\pi n}{3}\right)
\end{aligned}
$$

(b) $x_{r}(t)=3 \cos (10000 \pi t / 6)-\cos (10000 \pi t / 3)$

1.13

(a)

$$
\begin{aligned}
\text { Range } & =x_{\max }-x_{\min }=12.7 . \\
m & =1+\frac{\text { range }}{\triangle} \\
& =127+1=128 \Rightarrow \log _{2}(128) \\
& =7 \text { bits. }
\end{aligned}
$$

(b) $m=1+\frac{127}{0.02}=636 \Rightarrow \log _{2}(636) \Rightarrow 10$ bit A/D.

1.14

$$
\begin{aligned}
R & =\left(20 \frac{\text { samples }}{\mathrm{sec}}\right) \times\left(8 \frac{\mathrm{bits}}{\text { sample }}\right) \\
& =160 \frac{\mathrm{bits}}{\mathrm{sec}} \\
F_{\text {fold }} & =\frac{F_{s}}{2}=10 \mathrm{~Hz} . \\
\text { Resolution } & =\frac{1 \text { volt }}{2^{8}-1} \\
& =0.004 .
\end{aligned}
$$

1.15

(a) Refer to fig $1.15-1$. With a sampling frequency of 5 kHz , the maximum frequency that can be represented is 2.5 kHz . Therefore, a frequency of 4.5 kHz is aliased to 500 Hz and the frequency of 3 kHz is aliased to 2 kHz .

Figure 1.15-1:
(b) Refer to fig 1.15-2. $\mathrm{y}(\mathrm{n})$ is a sinusoidal signal. By taking the even numbered samples, the sampling frequency is reduced to half i.e., 25 kHz which is still greater than the nyquist rate. The frequency of the downsampled signal is 2 kHz .

1.16

(a) for levels $=64$, using truncation refer to fig 1.16-1.
for levels $=128$, using truncation refer to fig 1.16-2.
for levels $=256$, using truncation refer to fig 1.16-3.
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G.

Figure 1.15-2:

Figure 1.16-1:
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1.
levels $=128$, using truncation, $\mathrm{SQNR}=37.359 \mathrm{~dB}$

Figure 1.16-2:

Figure 1.16-3:
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1.
(b) for levels $=64$, using rounding refer to fig 1.16-4.
for levels $=128$, using rounding refer to fig 1.16-5.
for levels $=256$, using rounding refer to fig 1.16-6.

Figure 1.16-4:
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G.

Figure 1.16-5:

Figure 1.16-6:
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1.
(c) The sqnr with rounding is greater than with truncation. But the sqnr improves as the number of quantization levels are increased.
(d)

levels	64	128	256
theoretical sqnr	43.9000	49.9200	55.9400
sqnr with truncation	31.3341	37.359	43.7739
sqnr with rounding	32.754	39.2008	44.0353

The theoretical sqnr is given in the table above. It can be seen that theoretical sqnr is much higher than those obtained by simulations. The decrease in the sqnr is because of the truncation and rounding.
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G.

