2-1. Calculate the total uniformly distributed roof dead load in psf of horizontal plan area for a sloped roof with the design parameters given below.

- $2 x 8$ rafters at 24 " on centers
- Asphalt shingles on $1 / 2$ " plywood sheathing
- 6" insulation (fiberglass)
- Suspended Ceiling
- Roof slope: 6-in-12
- Mechanical \& Electrical (i.e. ducts, plumbing etc) $=5$ psf

Solution:

2x8 rafters at $24 "$ "on-centers	$=1.2 \mathrm{psf}$
Asphalt shingles (assume $1 / 4^{\prime \prime}$ shingles)	$=2.0 \mathrm{psf}$
$1 / 2 "$ plywood sheathing $=(4 \times 0.4 \mathrm{psf} / 1 / 8 "$ plywood $)$	$=1.6 \mathrm{psf}$
$6 "$ insulation (fiberglass) $=6 \times 1.1 \mathrm{psf} / \mathrm{in}$.	$=6.6 \mathrm{psf}$
Suspended Ceiling	$=2.0 \mathrm{psf}$
Mechanical \& Electrical (i.e. ducts, plumbing etc)	$=5.0 \mathrm{psf}$

Total roof dead load, $\mathrm{D}(\mathrm{psf}$ of sloped roof area $)=18.4 \mathrm{psf}$
The total dead load in psf of horizontal plan area will be:
$\mathrm{w}_{\mathrm{DL}}=\mathrm{D}\left(\frac{\sqrt{6^{2}+12^{2}}}{12}\right)$, psf of horizontal plan area
$=18.4 \mathrm{psf}(1.118)=20.6 \mathrm{psf}$ of horizontal plan area

2-2. Given the following design parameters for a sloped roof, calculate the uniform total load and the maximum shear and moment on the rafter. Calculate the horizontal thrust on the exterior wall if rafters are used.

- Roof dead load, $D=20$ psf (of sloped roof area)
- Roof snow load, $S=40$ psf (of horizontal plan area)
- Horizontal projected length of rafter, $L_{2}=14 \mathrm{ft}$
- Roof slope: 4-in-12
- Rafter or Truss spacing $=4^{\prime} 0$

Solutions:

Sloped length of rafter, $\mathrm{L}_{1}=\left(\frac{\sqrt{4^{2}+12^{2}}}{12}\right)(14 f t)=14.8 f t$

Using the load combinations in section 2.1, the total load in psf of horizontal plan area will be:

$$
\begin{aligned}
\mathrm{w}_{\mathrm{TL}} & =\mathrm{D}\left(\frac{\mathrm{~L}_{1}}{\mathrm{~L}_{2}}\right)+\left(\mathrm{L}_{\mathrm{r}} \text { or } \mathrm{S} \text { or } \mathrm{R}\right), \text { psf of horizontal plan area } \\
& =20 \mathrm{psf}\left(\frac{14.8^{\prime}}{14^{\prime}}\right)+40 \mathrm{psf} \\
& =\mathbf{6 1 . 1} \mathbf{~ p s f} \text { of horizontal plan area }
\end{aligned}
$$

The total load in pounds per horizontal linear foot ($\mathrm{Ib} / \mathrm{ft}$) is given as,
$\mathrm{w}_{\mathrm{TL}} \quad(\mathrm{Ib} / \mathrm{ft})=\mathrm{w}_{\mathrm{TL}}(\mathrm{psf}) \times$ Tributary width (TW) or Spacing of rafters

$$
=61.1 \mathrm{psf}(4 \mathrm{ft})=\mathbf{2 4 4 . 4} \mathbf{~ l b} / \mathbf{f t} .
$$

$\mathrm{h}=(4 / 12)(14 \mathrm{ft})=4.67 \mathrm{ft}$
The horizontal thrust H is,
$\mathrm{H}=\frac{\mathrm{w}_{\mathrm{TL}}\left(\mathrm{L}_{2}\right)\left(\frac{\mathrm{L}_{2}}{2}\right)}{\mathrm{h}}=\frac{244.4 \mathrm{Ib} / \mathrm{ft}\left(14^{\prime}\right)\left(\frac{14^{\prime}}{2}\right)}{4.67^{\prime}}=5129 \mathrm{Ib}$.
The collar or ceiling ties must be designed to resist this horizontal thrust.
$\mathrm{L}_{2}=14^{\prime}$
The maximum shear force in the rafter is,

$$
\mathrm{V}_{\max }=\mathrm{w}_{\mathrm{TL}}\left(\frac{\mathrm{~L}_{2}}{2}\right)=244.4\left(\frac{14^{\prime}}{2}\right)=1711 \mathrm{Ib}
$$

The maximum moment in the rafter is,
$M_{\max }=\frac{\mathrm{w}_{\mathrm{TL}}\left(\mathrm{L}_{2}\right)^{2}}{8}=\frac{244.4\left(14^{\prime}\right)^{2}}{8}=5989 \mathrm{ft}-\mathrm{Ib}=5.9 \mathrm{ft}-\mathrm{kip}$

2-3. Determine the tributary widths and tributary areas of the joists, beams, girders and columns in the panelized roof framing plan shown below. Assuming a roof dead load of 20 psf and an essentially flat roof with a roof slope of $1 / 4$ " per foot for drainage, determine the following loads using the IBC load combinations. Neglect the rain load, R and assume the snow load, S is zero:
a. The uniform total load on the typical roof joist in Ib/ft
b. The uniform total load on the typical roof girder in Ib/ft
c. The total axial load on the typical interior column, in Ib.
d. The total axial load on the typical perimeter column, in Ib

Solution:

The solution is presented in a tabular format as shown below:
Tributary Widths and Tributary Areas of Joists, Beams and Columns

Structural Member	Tributary Width (TW)	Tributary Area (TA)
Purlin	$\frac{10^{\prime}}{2}+\frac{10^{\prime}}{2}=10^{\prime}$	$10^{\prime} \times 20^{\prime}=200 \mathrm{ft}^{2}$
Glulam girder	$\frac{20^{\prime}}{2}+\frac{20^{\prime}}{2}=20^{\prime}$	$20^{\prime} \times 60^{\prime}=1200 \mathrm{ft}^{2}$
Typical interior		$\left(\frac{20^{\prime}}{2}+\frac{20^{\prime}}{2}\right)\left(\frac{60^{\prime}}{2}+\frac{60^{\prime}}{2}\right)=1200 \mathrm{ft}^{2}$
Column	$\left(\frac{20^{\prime}}{2}+\frac{20^{\prime}}{2}\right)\left(\frac{60^{\prime}}{2}\right)=600 \mathrm{ft}^{2}$	
Typical perimeter Column		

Since the snow and rain load are both zero, the roof live load, L_{r} will be critical.
With a roof slope of $1 / 4$ " per foot, the number of inches of rise per foot, $\mathrm{F}=1 / 4=0.25$
Purlin:

The tributary width TW $=10 \mathrm{ft}$ and the tributary area, $\mathrm{TA}=200 \mathrm{ft}^{2}<200 \mathrm{ft}^{2}$
From section 2.5.1, we obtain: $\mathrm{R}_{1}=1.0$ and $\mathrm{R}_{2}=1.0$,
Using equation 2-4 gives the roof live load, $\mathrm{L}_{\mathrm{r}}=20 \times 1 \times 1=20 \mathrm{psf}$
The total loads are calculated as follows:
$\mathrm{w}_{\mathrm{TL}}(\mathrm{psf})=\left(\mathrm{D}+\mathrm{L}_{\mathrm{r}}\right)=20+20=40 \mathrm{psf}$
$\mathrm{w}_{\mathrm{TL}}(\mathrm{Ib} / \mathrm{ft})=\mathrm{w}_{\mathrm{TL}}(\mathrm{psf}) \mathrm{x}$ tributary width $(\mathrm{TW})=40 \mathrm{psf} \times 10 \mathrm{ft}=400 \mathrm{Ib} / \mathrm{ft}$

Glulam Girder:

The tributary width, TW = 20 ft and the tributary Area, TA = $1200 \mathrm{ft}^{2}$
Thus, TA > 600, and from section 2.4 , we obtain:
$\mathrm{R}_{1}=0.6$, and
$\mathrm{R}_{2}=1.0$
Using equation 2-4 gives the roof live load, $\mathrm{L}_{\mathrm{r}}=20 \times 0.6 \times 1=12 \mathrm{psf}$
The total loads are calculated as follows:
$\mathrm{w}_{\mathrm{TL}}(\mathrm{psf})=\left(\mathrm{D}+\mathrm{L}_{\mathrm{r}}\right)=20+12=32 \mathrm{psf}$
$\mathrm{w}_{\mathrm{TL}}(\mathrm{Ib} / \mathrm{ft})=\mathrm{w}_{\mathrm{TL}}(\mathrm{psf}) \times$ tributary width $(\mathrm{TW})=32 \mathrm{psf} \times 20 \mathrm{ft}=640 \mathrm{Ib} / \mathrm{ft}$
Typical Interior Column:

The tributary tributary area of the typical interior column, TA $=1200 \mathrm{ft}^{2}$
Thus, TA > 600, and from section 2.4, we obtain:
$\mathrm{R}_{1}=0.6$, and
$\mathrm{R}_{2}=1.0$
Using equation 2-4 gives the roof live load, $\mathrm{L}_{\mathrm{r}}=20 \times 0.6 \times 1=12 \mathrm{psf}$
The total loads are calculated as follows:
$\mathrm{w}_{\mathrm{TL}}(\mathrm{psf})=\left(\mathrm{D}+\mathrm{L}_{\mathrm{r}}\right)=20+12=32 \mathrm{psf}$
The Column Axial Load, $\mathrm{P}=32 \mathrm{psf} \times 1200 \mathrm{ft}^{2}=38,400 \mathrm{Ib}=38.4 \mathrm{kips}$

Typical Perimeter Column:

The tributary tributary area of the typical perimeter column, TA $=600 \mathrm{ft}^{2}$
Thus, from section 2.5.1, we obtain:
$\mathrm{R}_{1}=0.6$, and
$\mathrm{R}_{2}=1.0$
Using equation 2-4 gives the roof live load, $\mathrm{L}_{\mathrm{r}}=20 \times 0.6 \times 1=12 \mathrm{psf}$
The total loads are calculated as follows:
$\mathrm{w}_{\mathrm{TL}}(\mathrm{psf})=\left(\mathrm{D}+\mathrm{L}_{\mathrm{r}}\right)=20+12=32 \mathrm{psf}$
The Column Axial Load, $\mathrm{P}=32 \mathrm{psf} \times 600 \mathrm{ft}^{2}=19,200 \mathrm{Ib}=19.2 \mathrm{kips}$
2-4. A building has sloped roof rafters (5:12 slope) spaced at 2' 0 " on centers and is located in Hartford, Connecticut. The roof dead load is 22 psf of sloped area. Assume a fully exposed roof with terrain category " C ", and use the ground snow load from the IBC or ASCE 7 snow map
(a) Calculate the total uniform load in lb/ft on a horizontal plane using the IBC.
(b) Calculate the maximum shear and moment in the roof rafter.

Solution:

The roof slope, θ for this building is 22.6°,

Roof Live Load, L_{r} :

From Section 2.4, the roof slope factor is obtained as,
$\mathrm{F}=5 \quad \therefore \mathrm{R}_{2}=1.2-0.05(5)=0.95$
Assume the tributary area (TA) of the rafter < $200 \mathrm{ft}^{2}$, $\therefore \mathrm{R}_{1}=1.0$ The roof live load will be,
$\mathrm{L}_{\mathrm{r}}=20 \mathrm{R}_{1} \mathrm{R}_{2}=20(1.0)(0.95)=19 \mathrm{psf}$

Snow Load:

Using IBC Figure 1608.2 or ASCE 7 Figure 7-1, the ground snow load, Pg_{g} for Hartford, Connecticut is 30 psf .

Assuming a building with a warm roof and fully exposed, and a building site with terrain category "C", we obtain the coefficients as follows:

Exposure coefficient, $\mathrm{C}_{\mathrm{e}}=0.9$ (ASCE 7 Table 7-2)
The thermal factor, $\mathrm{C}_{\mathrm{t}}=1.0$ (ASCE 7 Table 7-3)
The Importance Factor, $\mathrm{I}=1.0$ ASCE Table 7-4
The slope factor, $\mathrm{C}_{s}=1.0$ (ASCE Figure 7-2 with roof slope, $\theta=22.6^{\circ}$ and a warm roof)
The flat roof snow load, $\quad \mathrm{P}_{\mathrm{f}}=0.7 \mathrm{C}_{\mathrm{e}} \mathrm{C}_{\mathrm{t}} \mathrm{I} \mathrm{P}_{\mathrm{g}}=0.7 \times 0.9 \times 1.0 \times 1.0 \times 30=18.9 \mathrm{psf}$
Minimum flat roof snow load, $\mathrm{Pm}=20 \mathrm{I}_{\mathrm{s}}=20(1.0)=20 \mathrm{psf}$ (governs)
Thus, the design roof snow load,

$$
\mathrm{P}_{\mathrm{s}}=\mathrm{C}_{\mathrm{s}} \mathrm{P}_{\mathrm{f}}=1.0 \times 20=20 \mathrm{psf}
$$

Therefore, the snow load, $\mathrm{S}=20 \mathrm{psf}$
The total load in psf of horizontal plan area is given as,
$\mathrm{w}_{\mathrm{TL}}=\mathrm{D}\left(\frac{\mathrm{L}_{1}}{\mathrm{~L}_{2}}\right)+\left(\mathrm{L}_{\mathrm{r}}\right.$ or S or R$)$, psf of horizontal plan area
Since the roof live load, $\mathrm{L}_{\mathrm{r}}(18 \mathrm{psf})$ is smaller that the snow load, $\mathrm{S}(20 \mathrm{psf})$, the snow load is more critical and will be used in calculating the total roof load.

$$
\begin{aligned}
\mathrm{w}_{\mathrm{TL}} & =22 \mathrm{psf}\left(\frac{\sqrt{5^{2}+12^{2}}}{12}\right)+20 \mathrm{psf} \\
& =\mathbf{4 3 . 8 3} \mathbf{~ p s f} \text { of horizontal plan area }
\end{aligned}
$$

The total load in pounds per horizontal linear foot ($\mathrm{Ib} / \mathrm{ft}$) is given as,
$\mathrm{w}_{\mathrm{TL}} \quad(\mathrm{Ib} / \mathrm{ft})=\mathrm{w}_{\mathrm{TL}}(\mathrm{psf}) \times$ Tributary width (TW) or Spacing of rafters

$$
=43.83 \mathrm{psf}(2 \mathrm{ft})=\mathbf{8 7 . 7} \mathbf{~ l b} / \mathbf{f t} .
$$

Assume $L_{2}=14{ }^{\prime}$

The maximum moment in the rafter is,

$$
\mathrm{M}_{\max }=\frac{\mathrm{w}_{\mathrm{TL}}\left(\mathrm{~L}_{2}\right)^{2}}{8}=\frac{87.7\left(14^{\prime}\right)^{2}}{8}=2149 \mathrm{ft}-\mathrm{Ib}=2.15 \mathrm{ft}-\mathrm{kip}
$$

2-5. A 3-story building has columns spaced at 18 ft in both orthogonal directions, and is subjected to the roof and floor loads shown below. Using a column load summation table, calculate the cumulative axial loads on a typical interior column with and without live load reduction. Assume a roof slope of $1 / 4 "$ per foot for drainage.

Roof Loads:

$\begin{array}{ll}\text { Dead Load, } D_{\text {roof }} & =20 \mathrm{psf} \\ \text { Snow Load, } S & =40 \mathrm{psf}\end{array}$
$2^{\text {nd }}$ and $3^{\text {rd }}$ Floor Loads:
Dead Load, $\mathrm{D}_{\text {floor }}=40 \mathrm{psf}$
Floor Live Load, $\mathrm{L}=50 \mathrm{psf}$

Solution:

At each level, the tributary area (TA) supported by a typical interior column is

$$
18^{\prime} \times 18^{\prime}=324 \mathrm{ft}^{2}
$$

Roof Live Load, L_{r} :

From section 2.4, the roof slope factor is obtained as,
$\mathrm{F}=1 / 4=0.25 \quad \therefore \mathrm{R}_{2}=1.0$
Since the tributary area (TA) of the column $=324 \mathrm{ft}^{2}, \quad \therefore \mathrm{R}_{1}=1.2-0.001(324)=0.88$
The roof live load will be,
$\mathrm{L}_{\mathrm{r}}=20 \mathrm{R}_{1} \mathrm{R}_{2}=20(0.88)(1.0)=17.6 \mathrm{psf}<$ Snow load, $\mathrm{S}=40 \mathrm{psf}$
The governing load combination from Section 2.1.1 for calculating the column axial loads is $\mathrm{D}+$ $\mathrm{L}+\left(\mathrm{L}_{r}\right.$ or S or R$)$. Since the snow load is greater than the roof live load, the critical load combination reduces to $\mathrm{D}+\mathrm{L}+\mathrm{S}$.

The reduced or design floor live load for the 2nd and 3rd floors are calculated using the table below:

Reduced or Design Floor Live Load Calculation Table

Member	Levels supported	A_{T} (summation of floor tributary area)	$\mathbf{K}_{\text {LL }}$	Unreduced Floor live load, Lo (psf)	Live Load Reduction Factor $\begin{aligned} & 0.25+ \\ & 15 / \sqrt{ }\left(K_{L L}\right. \\ & \left.\mathbf{A}_{T}\right) \end{aligned}$	Design floor live load, L

$3^{\text {rd }}$ floor Column (i.e. column below roof)	Roof only	Floor live load reduction NOT applicable to roofs!!!	-	-	-	40 psf (Snow load)
$2^{\text {nd }}$ floor column (i.e. column below $3^{\text {rd }}$ floor)	1 floor + roof	$\begin{aligned} & 1 \text { floor x } 324 \\ & \mathrm{ft}^{2}=\mathbf{3 2 4} \mathbf{f t}^{\mathbf{2}} \end{aligned}$	$\begin{gathered} 4 \\ \mathrm{~K}_{\mathrm{LL}} \mathrm{~A}_{\mathrm{T}}= \\ 1296> \\ 400 \mathrm{ft}^{2} \therefore \\ \text { Live Load } \\ \text { reduction } \\ \text { allowed } \end{gathered}$	50 psf	$\begin{gathered} 0.25+ \\ 15 / \sqrt{ }(4 \mathrm{x} \\ 324)= \\ 0.67 \end{gathered}$	$\begin{gathered} 0.67 \times 50 \\ =33.5 \mathrm{psf} \\ \geq 0.50 \mathrm{Lo} \\ =25 \mathrm{psf} \end{gathered}$
Ground or $1^{\text {st }}$ floor column (i.e. column below $2^{\text {nd }}$ floor)	2 floors + roof	$\begin{aligned} & 2 \text { floors x } 324 \\ & \mathrm{ft}^{2}=\mathbf{6 4 8} \mathbf{f t}^{2} \end{aligned}$	$\begin{gathered} 4 \\ \mathrm{~K}_{\mathrm{LL}} \mathrm{~A}_{\mathrm{T}}= \\ 2592> \\ 400 \mathrm{ft}^{2} \therefore \\ \text { Live Load } \\ \text { reduction } \\ \text { allowed } \end{gathered}$	50 psf	$\begin{gathered} 0.25+ \\ 15 / \sqrt{ }(4 \mathrm{x} \\ 648)= \\ 0.54 \end{gathered}$	$\begin{gathered} 0.54 \times 50 \\ =\mathbf{2 7} \mathbf{~ p s f} \\ \geq 0.40 \mathrm{Lo} \\ =20 \mathrm{psf} \end{gathered}$

The column axial loads with and without floor live load reduction are calculated using the column load summation tables below:

Column Load Summation Table

Level	Tributar y area, (TA) (ft ${ }^{2}$)	Dead Load, D (psf)	Live Load, $L_{o}\left(S\right.$ or L_{r} or R on the roof) (psf)	Design Live Load Roof: S or L_{r} or R Floor: L (psf)	Unfactored total load at each level, $\mathrm{w}_{\mathrm{s} 1}$ Roof: D Floor: $D+L$ (psf)	Unfactored total load at each level, $\mathrm{w}_{\mathrm{s} 2}$ Roof: D+0.75S Floor: D+0.75L (psf)	Unfactore d Column Axial Load at each level, $\mathrm{P}=$ (TA) ($\mathrm{w}_{\mathrm{s} 1}$) or (TA) $\left(\mathrm{w}_{\mathrm{s} 2}\right)$ (kips)	Cumulative Unfactored Axial Load, $\Sigma \mathrm{P}_{D+L}$ (kips)	Cumulative Unfactored Axial Load, $\Sigma \mathrm{P}_{D+0.75 L+0}$. $75 S$ (kips)	Maximum Cumulative Unfactored Axial Load, $\Sigma \mathrm{P}$ (kips)
With Floor Live Load Reduction										
Roof	324	20	40	40	20	50	6.5 or 16.2	6.5	16.2	16.2
$3{ }^{\text {rd }} \mathrm{Flr}$	324	40	50	33.5	73.5	65.1	$\begin{array}{\|l\|} \hline 23.8 \text { or } \\ 21.1 \\ \hline \end{array}$	30.3	37.3	37.3
$2^{\text {nd }} \mathrm{Flr}$	324	40	50	27	67	60.3	$\begin{aligned} & \hline 21.7 \text { or } \\ & 19.5 \\ & \hline \end{aligned}$	52	56.8	56.8
Without Floor Live Load Reduction										
Roof	324	20	40	40	20	50	6.5 or 16.2	6.5	16.2	16.2
Third floor	324	40	50	50	90	77.5	$\begin{aligned} & \hline 29.2 \text { or } \\ & 25.1 \\ & \hline \end{aligned}$	35.7	41.3	41.3
Secon d floor	324	40	50	50	90	77.5	$\begin{aligned} & \hline 29.2 \text { or } \\ & 25.1 \\ & \hline \end{aligned}$	64.9	66.4	66.4

2-6. A 2-story wood framed structure 36 ft $x 75$ ft in plan is shown below with the following given information. The floor to floor height is 10 ft and the truss bearing (or roof datum) elevation is at 20 ft and the truss ridge is 28 ft 4 " above the ground floor level. The building is "enclosed" and located in Rochester, New York on a site with a category "C" exposure. Assuming the following additional design parameters, calculate:

Floor Dead Load $=$	30 psf
Roof Dead Load $=$	20 psf
Exterior Walls $=$	10 psf
Snow Load $\left(P_{f}\right)=$	40 psf
Site Class $=$	D
Importance $\left(I_{e}\right)=$	1.0
$S_{S}=$	0.25%
$S_{l}=$	0.07%
$R=$	6.5

(a) The total horizontal wind force on the main wind force resisting system (MWFRS) in both the transverse and longitudinal directions.
(b) The gross vertical wind uplift pressures and the net vertical wind uplift pressures on the roof (MWFRS) in both the transverse and longitudinal directions.
(c) The seismic base shear, V, in kips
(d) The lateral seismic load at each level in kips

Solution:

(a) Lateral Wind

Roof Slope: Run $=18^{\prime}$, Rise $=8^{\prime}-4^{\prime \prime}, \theta=25^{\circ}$
Assuming a Category II building
$\mathrm{V}=115 \mathrm{mph}($ ASCE 7 Table 26.5-1A)
Wind Pressures (from ASCE 7, Figure 28.6-1):
Transverse $\left(\theta=25^{\circ}\right)$:

Horizontal

Zone A: 26.3 psf
Zone B: 4.2 psf
Zone C: 19.1 psf
Zone D: 4.3 psf

Vertical
Zone E: -11.7 psf
Zone F: -15.9 psf
Zone G: -8.5 psf
Zone H: -12.8 psf

Longitudinal: $\left(\theta=0^{\circ}\right)$:

Horizontal

Zone A: 21 psf
Zone B: N/A
Zone C: 13.9 psf
Zone D: N/A

Vertical

Zone E: - 25.2 psf
Zone F: -14.3 psf
Zone G: -17.5 psf
Zone H: -11.1 psf

End Zone width:
a: $\quad \leq 0.1 \times$ least horizontal dimension of building
$\leq 0.4 \times$ mean roof height of the building and
$\geq 0.04 \times$ least horizontal dimension of building
≥ 3 feet
a $\quad \leq 0.1\left(36^{\prime}\right)=3.6^{\prime}$ (governs)
$\leq(0.4)\left(\frac{20^{\prime}+28.33^{\prime}}{2}\right)=9.67$,
$\geq 0.04\left(36^{\prime}\right)=1.44^{\prime}$
≥ 3 feet
Therefore the Edge Zone $=2 \mathrm{a}=2\left(3.6^{\prime}\right)=7.2^{\prime}$
Average horizontal pressures:
Transverse:

$$
\begin{aligned}
& \mathrm{q}_{\text {avg }}=\left(\frac{(\text { end zone })(\text { end zone pressure })+(\text { bldg width }- \text { end zone })(\text { int erior zone pressure })}{(\text { bldgwidth })}\right) \\
& q_{\text {avg }}(\text { wall })=\left(\frac{\left(7.2^{\prime}\right)(26.3 p s f)+\left(75^{\prime}-7.2^{\prime}\right)(19.1 p s f)}{\left(75^{\prime}\right)}\right)=19.8 \mathrm{psf}(\text { Zones A, C) } \\
& q_{\text {avg }}(\text { roof })=\left(\frac{\left(7.2^{\prime}\right)(4.2 p s f)+\left(75^{\prime}-7.2^{\prime}\right)(4.3 p s f)}{\left(75^{\prime}\right)}\right)=4.3 \mathrm{psf}(\text { Zones B, D) }
\end{aligned}
$$

Longitudinal:

$$
q_{\text {avg }}(\text { wall })=\left(\frac{\left(7.2^{\prime}\right)(21 p s f)+\left(36^{\prime}-7.2^{\prime}\right)(13.9 p s f)}{\left(36^{\prime}\right)}\right)=15.32 \mathrm{psf}(\text { Zones A, C })
$$

Design wind pressures:
Height and exposure coefficient:

$$
\begin{aligned}
& \text { Mean roof height }=\left(\frac{20^{\prime}+28.33^{\prime}}{2}\right)=24.2^{\prime} \\
& \lambda=1.35\left(\text { ASCE } 7 \text { Figure } 28.6 \text {-1, Exposure }=\mathrm{C}, \mathrm{~h} \approx 25^{\prime}\right. \text {) }
\end{aligned}
$$

Transverse wind:

$$
\begin{aligned}
& P=q_{\text {avg }} \lambda \\
& P_{\text {wall }}=(19.8 \mathrm{psf})(1.35)=26.73 \mathrm{psf} \\
& P_{\text {roof }}=(4.3 \mathrm{psf})(1.35)=5.81 \mathrm{psf}
\end{aligned}
$$

Longitudinal wind:

$$
P_{\text {wall }}=(15.32 \mathrm{psf})(1.35)=20.7 \mathrm{psf}
$$

Total Wind Force:
Transverse wind:

$$
P_{T}=\left[(26.73 p s f)\left(10^{\prime}+10^{\prime}\right)+(5.81 p s f)(8.33 ')\right]\left(75^{\prime}\right)=43.7 \text { kips (base shear, }
$$

transverse)
Longitudinal wind:

$$
P_{T}=\left(20^{\prime}+\frac{8.33^{\prime}}{2}\right)(20.7 p s f)\left(36^{\prime}\right)=\mathbf{1 8 . 0} \mathbf{~ k i p s}(\text { base shear, longitudinal })
$$

(b) Wind Uplift

Average vertical pressures:

$$
\mathrm{P}=\mathrm{q}_{\text {avg }} \lambda
$$

From Part (a), base uplift pressures:

Transverse:	Longitudinal:
Zone E: -11.7 psf	Zone E: -25.2 psf
Zone F: -15.9 psf	Zone F: -14.3 psf
Zone G: -8.5 psf	Zone G: -17.5 psf
Zone H: -12.8 psf	Zone H: -11.1 psf

Transverse:

$$
\begin{aligned}
P_{u, \text { avg }} & =\left[(-11.7 p s f-15.9 p s f)\left(7.2^{\prime}\right)\left(\frac{36^{\prime}}{2}\right)+(-8.5 p s f-12.8 p s f)\left(75^{\prime}-7.2^{\prime}\right)\left(\frac{36^{\prime}}{2}\right)\right](1.35) \\
& =\mathbf{- 3 9 , 9 2 2} \mathbf{~ l b}
\end{aligned}
$$

$$
q_{u, \text { avg }}=\frac{-39,922 l b}{\left(75^{\prime}\right)\left(36^{\prime}\right)}=-\mathbf{1 4 . 8} \mathbf{~ p s f} \text { (gross uplift, transverse) }
$$

Longitudinal:

$$
\begin{aligned}
P_{u, \text { avg }} & =\left[(-25.2 p s f-14.3 p s f)\left(7.2^{\prime}\right)\left(\frac{75^{\prime}}{2}\right)+(-17.5 p s f-11.1 p s f)\left(36^{\prime}-7.2^{\prime}\right)\left(\frac{75^{\prime}}{2}\right)\right](1 \\
& =\mathbf{- 5 6 , 0 9 7} \mathbf{~ l b} . \\
q_{u, \text { avg }} & =\frac{-56,097 \mathrm{lb}}{\left(75^{\prime}\right)\left(36^{\prime}\right)}=-\mathbf{2 0 . 8} \mathbf{~ p s f} \text { (gross uplift, longitudinal) }
\end{aligned}
$$

Net factored uplift (Longitudinal controls):

$$
\begin{aligned}
\mathrm{q}_{\mathrm{net}} & =0.9 \mathrm{D}+\mathrm{W} \\
& =(0.9)(20 \mathrm{psf})+(-20.8 \mathrm{psf})=\mathbf{- 2 . 8 p s f}(\text { net uplift })
\end{aligned}
$$

(c) Seismic base shear

Calculate "W" for each level

Level	Area (ft. ${ }^{2}$)	Trib. Height (ft.)	Wt. Level (kip)*	Wt. Walls (kip)	$\mathbf{W}_{\text {total }}$ (kip)
Roof	$\begin{aligned} & 75^{\prime} \times 36^{\prime} \\ & =2700 \mathbf{f t}^{2} \end{aligned}$	$\left(10^{\prime} / 2\right)=\mathbf{5}^{\prime}$	$\begin{aligned} & \left(2700 \mathrm{ft}^{2}\right) \times[20 \mathrm{psf}+ \\ & (0.2 \mathrm{x} 40 \mathrm{psf})]=\mathbf{7 5 . 6 k} \end{aligned}$	$\begin{gathered} \left(5^{\prime}\right) \times(10 \mathrm{psf}) \times(2) \\ \mathrm{x}\left(75^{\prime}+36^{\prime}\right)= \\ \mathbf{1 1 . 1 k} \end{gathered}$	75.6k + $11.1 \mathrm{k}=$ 86.7k
$2^{\text {nd }}$	$\begin{aligned} & 75^{\prime} \times 36^{\prime} \\ & =\mathbf{2 7 0 0} \mathbf{f t}^{2} . \end{aligned}$	$\begin{gathered} \left(10^{\prime} / 2\right)+\left(10^{\prime} / 2\right) \\ =\mathbf{1 0} \end{gathered}$	$\begin{gathered} \left(2700 \mathrm{ft}^{2}\right) \times(30 \mathrm{psf}) \\ =\mathbf{8 1 . 0 k} \end{gathered}$	$\begin{gathered} \left(10^{\prime}\right) \times(10 \mathrm{psf}) \times \\ (2) \times\left(75^{\prime}+36^{\prime}\right)= \\ \mathbf{2 2 . 2 k} \end{gathered}$	81.0k + $22.2 \mathrm{k}=$ 103.2k
				$\begin{gathered} \sum \mathrm{W}=86.7 \mathrm{k}+103.2 \mathrm{k}= \\ \mathbf{1 8 9 . 9 k} \end{gathered}$	

* Note: Where the flat roof snow load, P_{f}, is greater than 30psf, then 20% of the flat roof snow load shall be included in " W " for the roof (ASCE 7 Section 12.14.8.1)

Seismic Variables:

$\mathrm{F}_{\mathrm{a}}=1.6($ ASCE 7 Table 11.4-1)
$\mathrm{F}_{\mathrm{v}}=2.4($ ASCE 7 Table 11.4-2))
$\mathrm{S}_{\mathrm{MS}}=\mathrm{F}_{\mathrm{a}} \mathrm{S}_{\mathrm{S}}=(1.6)(0.25)=0.40$
$\mathrm{S}_{\mathrm{M} 1}=\mathrm{F}_{\mathrm{a}} \mathrm{S}_{1}=(2.4)(0.07)=0.168$
$\mathrm{S}_{\mathrm{DS}}=(2 / 3) \mathrm{S}_{\mathrm{MS}}=(2 / 3)(0.40)=\mathbf{0 . 2 6 7}$
$\mathrm{S}_{\mathrm{D} 1}=(2 / 3) \mathrm{S}_{\mathrm{M} 1}=(2 / 3)(0.168)=\mathbf{0 . 1 1 2}$

Base Shear:

$$
\mathrm{V}=\frac{\mathrm{FS}}{\mathrm{DS}} \mathrm{~W}
$$

$$
\mathrm{V}=\frac{(1.1)(0.267)(189.9)}{(6.5)}=\mathbf{8 . 5 8 k}
$$

(d) Seismic Forces at each level:

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{x}}=\frac{\mathrm{FS}_{\mathrm{DS}} \mathrm{~W}_{\mathrm{x}}}{\mathrm{R}} \\
& \mathrm{~F}_{\mathrm{R}}=\frac{(1.1)(0.267)(86.7)}{(6.5)}=\mathbf{3 . 9 2 k} \\
& \mathrm{F}_{2}=\frac{(1.1)(0.267)(103.2)}{(6.5)}=\mathbf{4 . 6 7} \mathbf{k}
\end{aligned}
$$

2-7 (see framing plan and floor section)
a) Determine the floor dead load in PSF
b) Determine the service dead and live loads to J-1 and G-1 in PLF
c) Determine the maximum factored loads in PLF to J-1 and G-1
d) Determine the factored maximum moment and shear in J-1 and G-1
e) Determine the maximum service and factored load in kips to C-1

Floor framing plan

Dead Loads

$\mathrm{w}_{\mathrm{gyp}}:=(1.5 \mathrm{in}) \cdot\left(6 \frac{\mathrm{lb}}{\mathrm{ft}^{2} \cdot \mathrm{in}}\right)=9 \cdot \mathrm{psf}$
$\mathrm{w}_{\text {sht }}:=(0.75 \mathrm{in})(0.4 \mathrm{psf})\left(\frac{1}{0.125 \mathrm{in}}\right)=2.4 \cdot \mathrm{psf}$
${ }^{\mathrm{w}} \mathrm{ME}:=5 \mathrm{psf} \quad \mathrm{w}_{\mathrm{ins}}:=4 \mathrm{psf} \quad \mathrm{w}_{\mathrm{clg}}:=2 \mathrm{psf}$
${ }^{\mathrm{W}} \mathrm{LVL}:=\frac{(5.7 \mathrm{plf})}{1.33 \mathrm{ft}}=4.286 \cdot \mathrm{psf}$

$\mathrm{DL}:=\mathrm{w}_{\mathrm{gyp}}+\mathrm{w}_{\mathrm{sht}}+\mathrm{w}_{\mathrm{ME}}+\mathrm{w}_{\mathrm{ins}}+\mathrm{w}_{\mathrm{clg}}+\mathrm{w}_{\mathrm{LVL}}=26.7 \cdot \mathrm{psf}$ parta

Loads to J-1:

$L_{\mathrm{j}}:=16 \mathrm{ft}$
TWj := 16in
${ }^{w_{D j}}:=\mathrm{TWj} \cdot \mathrm{DL}=35.6 \cdot \mathrm{plf}$
${ }^{\mathrm{w}} \mathrm{Lj}:=\mathrm{TWj} \cdot \mathrm{LL}=166.7 \cdot$ plf
${ }^{\mathrm{w}_{\mathrm{Sj}}}:={ }^{\mathrm{w}} \mathrm{Dj}+{ }^{\mathrm{w}} \mathrm{Lj}=202.2 \cdot \mathrm{plf} \quad$ part b
$\mathrm{w}_{\mathrm{uj}}:=(1.2)\left({ }^{\mathrm{w}} \mathrm{Dj}\right)+(1.6)\left({ }_{\mathrm{w}}^{\mathrm{Lj}}\right)=309 \cdot \textrm{plf} \quad$ part c
$\mathrm{M}_{\mathrm{Sj}}:=\frac{{ }^{w_{S j}} \mathrm{~L}_{\mathrm{j}}{ }^{2}}{8}=6472 \cdot \mathrm{ft} \cdot \mathrm{lb}$
$\mathrm{V}_{\mathrm{Sj}}:=\frac{{ }^{\mathrm{w}} \mathrm{Sj}_{\mathrm{j}} \mathrm{L}_{\mathrm{j}}}{2}=1618 \mathrm{lbf}$
$M_{u j}:=\frac{w_{u j} L_{j}^{2}}{8}=9900 \cdot f \cdot \mathrm{ft} \cdot \mathrm{b}$
part d
$\mathrm{V}_{\mathrm{uj}}:=\frac{\mathrm{w}_{\mathrm{uj}} \mathrm{L}_{\mathrm{j}}}{2}=2474.9 \mathrm{lbf}$

Loads to G-1:

$\mathrm{L}_{\mathrm{G}}:=13 \mathrm{ft}$

$$
\mathrm{TW}_{\mathrm{G}}:=8 \mathrm{ft}
$$

$$
{ }^{\mathrm{w}} \mathrm{DG}:=\mathrm{TW}_{\mathrm{G}} \mathrm{DL}+(3) \cdot(7.1 \mathrm{plf})=234.8 \cdot \mathrm{plf}
$$

$$
\mathrm{w}_{\mathrm{LG}}:=\mathrm{TW}_{\mathrm{G}} \mathrm{LL}=1000 \cdot \mathrm{plf}
$$

$$
{ }^{\mathrm{w}_{\mathrm{SG}}}:={ }^{\mathrm{w}} \mathrm{DG}^{+}{ }^{\mathrm{w}} \mathrm{LG}=1234.8 \cdot \mathrm{plf} \quad \text { part } b
$$

$$
\mathrm{w}_{\mathrm{uG}}:=(1.2)\left({ }^{\mathrm{w}}{ }_{\mathrm{DG}}\right)+(1.6)\left(\mathrm{w}_{\mathrm{LG}}\right)=1882 \cdot \mathrm{plf} \quad \text { partc }
$$

$$
\mathrm{M}_{\mathrm{SG}}:=\frac{{ }^{\mathrm{w}} \mathrm{SG}^{\mathrm{L}_{\mathrm{G}}}}{}{ }^{2}{ }^{2} \quad 26085 \cdot \mathrm{ft} \cdot \mathrm{lb}
$$

Service Loads
$\mathrm{V}_{\mathrm{SG}}:=\frac{{ }^{\mathrm{w}_{\mathrm{SG}} \cdot \mathrm{L}_{\mathrm{G}}}}{2}=8026 \mathrm{lbf}$
$\mathrm{M}_{\mathrm{uG}}:=\frac{\mathrm{w}_{\mathrm{uG}} \mathrm{L}_{\mathrm{G}}^{2}}{8}=39752 \cdot \mathrm{ft} \cdot \mathrm{lb}$
$\mathrm{V}_{\mathrm{uG}}:=\frac{\mathrm{w}_{\mathrm{uG}}{ }^{\mathrm{L}_{\mathrm{G}}}}{2}=12231 \mathrm{lbf}$

Factored Loads

part d

Load to C-1:

$$
\mathrm{P}_{\mathrm{S}}:=2 \cdot \mathrm{~V}_{\mathrm{SG}}=16052 \mathrm{lbf} \quad \mathrm{P}_{\mathrm{u}}:=2 \cdot \mathrm{~V}_{\mathrm{uG}}=24463 \mathrm{lbf} \quad \text { parte }
$$

Problem 2.8

$$
\mathrm{b}:=1.875 \mathrm{in} \quad \mathrm{~d}:=12.5 \mathrm{in} \quad \mathrm{G}:=0.5
$$

$$
A_{x}:=b \cdot d=23.438 \cdot \mathrm{in}^{2}
$$

$$
\mathrm{S}_{\mathrm{x}}:=\frac{\mathrm{b} \cdot \mathrm{~d}^{2}}{6}=48.8 \cdot \mathrm{in}^{3} \quad \mathrm{I}_{\mathrm{x}}:=\frac{\mathrm{b} \cdot \mathrm{~d}^{3}}{12}=305.2 \cdot \mathrm{in}^{4}
$$

part a
$\mathrm{w}_{\text {self }}:=\mathrm{A}_{\mathrm{x}} \cdot \mathrm{G} \cdot 62.4 \mathrm{pcf}=5.1 \cdot \mathrm{plf} \quad$ part \mathbf{b}

$$
\begin{array}{ll}
\mathrm{L}_{\mathrm{b}}:=17 \mathrm{ft} & \text { TW }:=16 \mathrm{in} \\
\mathrm{DL}:=15 \mathrm{psf} & \mathrm{LL}:=40 \mathrm{psf}
\end{array}
$$

$$
\mathrm{w}_{\mathrm{DL}}:=\mathrm{TW} \cdot \mathrm{DL}+\mathrm{w}_{\text {self }}=25.1 \cdot \mathrm{plf} \quad \mathrm{w}_{\mathrm{LL}}:=\mathrm{LL} \cdot \mathrm{TW}=53.3 \cdot \mathrm{plf}
$$

$\mathrm{w}_{\mathrm{TL}}:=\mathrm{w}_{\mathrm{DL}}+\mathrm{w}_{\mathrm{LL}}=78.4 \cdot \mathrm{plf}$

$$
\mathrm{M}_{\mathrm{b}}:=\frac{\mathrm{w}_{\mathrm{TL}} \cdot \mathrm{~L}_{\mathrm{b}}{ }^{2}}{8}=2833 \cdot \mathrm{ft} \cdot \mathrm{lb}
$$

$$
\mathrm{V}_{\mathrm{b}}:=\frac{\mathrm{w}_{\mathrm{TL}} \cdot \mathrm{~L}_{\mathrm{b}}}{2}=666.497 \mathrm{lbf}
$$

$$
\mathrm{f}_{\mathrm{b}}:=\frac{\mathrm{M}_{\mathrm{b}}}{\mathrm{~S}_{\mathrm{x}}}=696.1 \mathrm{psi}
$$

part c
part d

$2-9 . \mathrm{w}=500 \mathrm{plf} ; \mathrm{L}_{1}=20 \mathrm{ft}$

Case 1: continuous over support

Case 2: hinged over support

Case 1 would have less deflection
Case 2 is easier to build; 40ft section might be hard to get or ship/handle on-site

2-10

a) List each truss member in a table (B1, B2, T1, T2, W1 to W6) and list the following: size, length, species, grade, density, weight).
b) Calculate the total weight of the truss using the table in (a).

Member	Size	Area (in. ${ }^{\text {}}$)	Length (ft.)	Species / Grade	γ	density (pcf)	weight (lb.)
W1	2×4	5.25	2.91	SPF / \#2	0.42	26.2	2.8
W2	2×4	5.25	9.02	SPF / stud	0.42	26.2	8.6
W3	2×4	5.25	6.94	SPF / stud	0.42	26.2	6.6
W4	2×4	5.25	9.83	SPF / stud	0.42	26.2	9.4
W5	2×4	5.25	11.4	SPF / stud	0.42	26.2	10.9
W6	2×4	5.25	12.61	SPF /2100F-1.8	0.46	28.7	13.2
B1/B2	2×4	5.25	19.41	SPF / \#2	0.42	26.2	18.5
T1/T2	2×4	5.25	21.7	SPF / \#2	0.42	26.2	20.7

Plates	I (in.)	\mathbf{w} (in.)	\mathbf{t} (in.)	$\mathbf{v o l}\left(\right.$ in. $^{\mathbf{3}}$)	$\boldsymbol{\gamma}$	density (pcf)	weight (lb.)
3×6	3	6	0.125	2.25	7.85	490	0.638
3×4	3	4	0.125	1.5	7.85	490	0.425
3×6	3	6	0.125	2.25	7.85	490	0.638
5×5	5	5	0.125	3.125	7.85	490	0.886
4×5	4	5	0.125	2.5	7.85	490	0.709
3×4	3	4	0.125	1.5	7.85	490	0.425
3×4	3	4	0.125	1.5	7.85	490	0.425
3×4	3	4	0.125	1.5	7.85	490	0.425
4×7	4	7	0.125	3.5	7.85	490	0.992

c) Draw a free-body diagram of the truss and indicate the uniformly distributed loads to the top and bottom chords in pounds per lineal foot (plf) and indicate the supports.
d) Calculate the maximum possible reaction using the controlling load case Dead + Snow.

Trib width $=2 \mathrm{ft}$.
Top chord:

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{D}}=(2)(10)=\underline{\mathbf{2 0} \mathbf{p l f}} \\
& \mathrm{W}_{\mathrm{Lr}}=(2)(20)=\text { 40plf} \\
& \mathrm{W}_{\mathrm{S}}=(2)(30.8)=\underline{\mathbf{6 1 . 6} \mathbf{p l f}}
\end{aligned}
$$

Bot. chord:
$\mathrm{w}_{\mathrm{D}}=(2)(10)=\underline{\mathbf{2 0} \mathbf{p l f}}$
$\mathrm{w}_{\mathrm{D}}=20+20=40 \mathrm{plf}$
$\mathrm{w}_{\mathrm{S}}=61.6 \mathrm{plf}$
$\mathrm{R}_{\text {max }}=$
$\frac{(20+20+61.6)(19.41)}{2}=986 \mathrm{lb}$.

d) What are the maximum compression loads to W2, W5, and W6 and what is the purpose of the single row of bracing at midpoint?

W2 - 860 lb
W5 - 899lb
W6 - 354 lb
The bracing limits the unbraced length of the members being braced and prevents buckling under compression.

2-11:

Given Loads:

Uniform load, w
D = 500plf
$\mathrm{L}=800$ plf
S = 600plf
Beam length $=25 \mathrm{ft}$.

Concentrated Load, P
$\mathrm{D}=11 \mathrm{k}$
$\mathrm{S}=15 \mathrm{k}$
$\mathrm{W}=+12 \mathrm{k}$ or -12 k
$\mathrm{E}=+8 \mathrm{k}$ or -8 k

Do the following:
a) Describe a practical framing scenario where these loads could all occur as shown.
b) Determine the maximum moment for each individual load effect (D, L, S, W, E)
c) Develop a spreadsheet to determine the worst-case bending moments for the code-required load combinations.
a) Transfer beam that has loads transferred from the roof down to a floor level.

Load Combinations

$$
\begin{aligned}
& \text { Uniform Loads Concentrated Loads } \quad \mathrm{L}_{\mathrm{B}}:=25 \mathrm{ft} \\
& { }^{\mathrm{w}}{ }_{\mathrm{D}}:=500 \mathrm{plf} \quad \quad \mathrm{P}_{\mathrm{D}}:=11 \mathrm{kips} \\
& { }^{\mathrm{w}} \mathrm{~L}_{\mathrm{L}}:=800 \mathrm{plf} \quad \quad \mathrm{P}_{\mathrm{S}}:=15 \mathrm{kips} \\
& \begin{array}{lll}
\mathrm{w}_{\mathrm{S}}:=600 \mathrm{plf} & \mathrm{P}_{\mathrm{W}}:=12 \mathrm{kips} & \mathrm{P}_{\text {Wup }}:=-12 \mathrm{kips} \\
& \mathrm{P}_{\mathrm{E}}:=8 \mathrm{kips} & \mathrm{P}_{\text {Eup }}:=-8 \mathrm{kips}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{S}}:=\frac{\mathrm{w}_{\mathrm{S}} \cdot \mathrm{~L}_{\mathrm{B}}{ }^{2}}{8}+\frac{\mathrm{P}_{\mathrm{S}} \cdot \mathrm{~L}_{\mathrm{B}}}{4}=141 \cdot \mathrm{ft} \cdot \mathrm{kips} \\
& \mathrm{LC} 1:=\left(1.4 \cdot \mathrm{M}_{\mathrm{D}}\right)=151 \cdot \mathrm{ft} \cdot \mathrm{kips} \\
& \mathrm{LC} 2:=\left(1.2 \cdot \mathrm{M}_{\mathrm{D}}\right)+\left(1.6 \cdot \mathrm{M}_{\mathrm{L}}\right)+\left(0.5 \cdot \mathrm{M}_{\mathrm{S}}\right)=300 \cdot \mathrm{ft} \cdot \mathrm{kips} \\
& \text { LC3a }:=\left(1.2 \cdot \mathrm{M}_{\mathrm{D}}\right)+\left(1 \cdot \mathrm{M}_{\mathrm{L}}\right)+\left(1.6 \cdot \mathrm{M}_{\mathrm{S}}\right)=417 \cdot \mathrm{ft} \cdot \mathrm{kips} \\
& \mathrm{LC} 3 \mathrm{~b}:=\left(1.2 \cdot \mathrm{M}_{\mathrm{D}}\right)+\left(0.5 \cdot \mathrm{M}_{\mathrm{W}}\right)+\left(1.6 \cdot \mathrm{M}_{\mathrm{S}}\right)=392 \cdot \mathrm{ft} \cdot \mathrm{kips} \\
& \mathrm{LC} 4:=\left(1.2 \cdot \mathrm{M}_{\mathrm{D}}\right)+\left(1.6 \cdot \mathrm{M}_{\mathrm{W}}\right)+\left(\mathrm{M}_{\mathrm{L}}\right)+\left(0.5 \cdot \mathrm{M}_{\mathrm{S}}\right)=382 \cdot \mathrm{ft} \cdot \mathrm{kips} \\
& \mathrm{LC} 5:=\left(1.2 \cdot \mathrm{M}_{\mathrm{D}}\right)+\left(\mathrm{M}_{\mathrm{E}}\right)+\left(\mathrm{M}_{\mathrm{L}}\right)+\left(0.2 \cdot \mathrm{M}_{\mathrm{S}}\right)=270 \cdot \mathrm{ft} \cdot \mathrm{kips} \\
& \text { LC6 := }\left(0.9 \cdot \mathrm{M}_{\mathrm{D}}\right)+\left(1.0 \cdot \mathrm{M}_{\mathrm{Wup}}\right)=22 \cdot \mathrm{ft} \cdot \mathrm{kips} \\
& \mathrm{LC} 7:=\left(0.9 \cdot \mathrm{M}_{\mathrm{D}}\right)+\left(\mathrm{M}_{\text {Eup }}\right)=47 \cdot \mathrm{ft} \cdot \mathrm{kips} \\
& M_{\max }:=\max (\mathrm{LC} 1, \mathrm{LC} 2, \mathrm{LC} 3 \mathrm{a}, \mathrm{LC} 3 \mathrm{~b}, \mathrm{LC} 4, \mathrm{LC} 5)=417 \cdot \mathrm{ft} \cdot \mathrm{kips} \\
& M_{\max U p}:=\min (L C 6, L C 7)=22 \cdot f t \cdot \mathrm{kips}
\end{aligned}
$$

2-12 (see framing plan)

Assuming a roof dead load of 25 psf and a 25 degree roof slope, determine the following using the IBC factored load combinations. Neglect the rain load, R and assume the snow load, S is zero:
e. Determine the tributary areas of $\mathrm{B} 1, \mathrm{G} 1, \mathrm{C} 1$, and W1
f. The uniform dead and roof live load and the factored loads on B1 in PLF
g. The uniform dead and roof live load on G1 and the factored loads in PLF (Assume G1 is uniformly loaded)
h. The total factored axial load on column C1, in kips
i. The total factored uniform load on W1 in PLF (assume trib. length of 50 ft .)

$$
\begin{array}{lll}
\text { Slope }:=25 & \mathrm{~F}_{\mathrm{N}}:=12 \cdot \tan \left(\text { Slope } \frac{\pi}{180}\right)=5.596 & \mathrm{~L}_{\mathrm{B}}:=45 \mathrm{ft}
\end{array} \quad \mathrm{TW}_{\mathrm{B}}:=5 \mathrm{ft} \quad \mathrm{ft}:=25 \mathrm{psf}
$$

Part (a):

$\mathrm{TA}_{\mathrm{B} 1}:=\mathrm{L}_{\mathrm{B}} \cdot \mathrm{TW}_{\mathrm{B}}=225 \mathrm{ft}^{2} \quad \quad \mathrm{R}_{1 \mathrm{~B} 1}:=1.2-\frac{0.001 \cdot \mathrm{TA}_{\mathrm{B} 1}}{1 \mathrm{ft}^{2}}=0.975$
$\mathrm{TA}_{\mathrm{G} 1}:=\mathrm{L}_{\mathrm{G}} \cdot \frac{\mathrm{L}_{\mathrm{B}}}{2}=562.5 \mathrm{ft}^{2} \quad \mathrm{R}_{1 \mathrm{G} 1}:=1.2-\frac{0.001 \cdot \mathrm{TA}_{\mathrm{G} 1}}{1 \mathrm{ft}^{2}}=0.638$
$\mathrm{TA}_{\mathrm{C} 1}:=\mathrm{L}_{\mathrm{G}} \cdot \frac{\mathrm{L}_{\mathrm{B}}}{2}=563 \mathrm{ft}^{2} \quad \mathrm{R}_{1 \mathrm{C} 1}:=1.2-\frac{0.001 \cdot \mathrm{TA}_{\mathrm{C} 1}}{1 \mathrm{ft}^{2}}=0.638$
$\mathrm{TW}_{\mathrm{W} 1}:=\mathrm{TW}_{\mathrm{W}} \frac{\mathrm{L}_{\mathrm{B}}}{2}=1125 \mathrm{ft}^{2} \quad \quad \mathrm{R}_{1 \mathrm{~W} 1}:=0.6$

Part (b):

$\mathrm{L}_{\mathrm{rB} 1}:=\max \left[0.6 \cdot 20 \mathrm{psf},\left(\mathrm{R}_{1 \mathrm{B1} 1} \cdot \mathrm{R}_{2} \cdot 20 \mathrm{psf}\right)\right]=17.9 \cdot \mathrm{psf}$
${ }^{\mathrm{w}} \mathrm{DB} 1:=\mathrm{TW}_{\mathrm{B}} \cdot \mathrm{D}=125 \cdot \mathrm{plf} \quad \quad{ }_{\mathrm{w}}^{\mathrm{LrB} 1}:=\mathrm{TW}_{\mathrm{B}} \cdot \mathrm{L}_{\mathrm{rB} 1}=90 \cdot \mathrm{plf} \quad \quad \mathrm{w}_{\mathrm{uB} 1}:=\left(1.2 \cdot \mathrm{w}_{\mathrm{DB} 1}\right)+\left(1.6 \cdot \mathrm{w}_{\mathrm{LrB} 1}\right)=294 \cdot \mathrm{plf}$

Part (c):

$\mathrm{L}_{\mathrm{rG} 1}:=\max \left[0.6 \cdot 20 \mathrm{psf},\left(\mathrm{R}_{1 \mathrm{G1}} \cdot \mathrm{R}_{2} \cdot 20 \mathrm{psf}\right)\right]=12 \cdot \mathrm{psf}$
${ }^{\mathrm{w}_{\mathrm{DG} 1}}:=\frac{\mathrm{L}_{\mathrm{B}}}{2} \cdot \mathrm{D}=563 \cdot \mathrm{plf} \quad \quad{ }^{\mathrm{w}} \mathrm{LrG1}:=\frac{\mathrm{L}_{\mathrm{B}}}{2} \cdot \mathrm{~L}_{\mathrm{rG} 1}=270 \cdot \mathrm{plf} \quad \quad \mathrm{w}_{\mathrm{uG1}}:=\left(1 \cdot 2 \cdot{ }{ }_{\mathrm{DG} 1}\right)+\left(1.6 \cdot{ }_{\mathrm{w}} \mathrm{LrG1}\right)=1107 \cdot \mathrm{plf}$

Part (d):
$\mathrm{L}_{\mathrm{rC} 1}:=\max \left[0.6 \cdot 20 \mathrm{psf},\left(\mathrm{R}_{1 \mathrm{C} 1} \cdot \mathrm{R}_{2} \cdot 20 \mathrm{psf}\right)\right]=12 \cdot \mathrm{psf}$
$\mathrm{P}_{\mathrm{DC} 1}:=\mathrm{TA}_{\mathrm{C} 1} \cdot \mathrm{D}=14 \cdot \mathrm{kips} \quad \mathrm{P}_{\mathrm{LrC} 1}:=\mathrm{TA}_{\mathrm{C} 1} \cdot \mathrm{~L}_{\mathrm{rC} 1}=7 \cdot \mathrm{kips} \quad \mathrm{P}_{\mathrm{uC} 1}:=\left(1.2 \cdot \mathrm{P}_{\mathrm{DC} 1}\right)+\left(1.6 \cdot \mathrm{P}_{\mathrm{LrC} 1}\right)=28 \cdot \mathrm{kips}$

Part (e):

$\mathrm{L}_{\mathrm{rW} 1}:=\max \left[0.6 \cdot 20 \mathrm{psf},\left(\mathrm{R}_{1 \mathrm{~W} 1} \cdot \mathrm{R}_{2} \cdot 20 \mathrm{psf}\right)\right]=12 \cdot \mathrm{psf}$

$\mathbf{2 - 1 3}$. A 3 -story building has columns spaced at 25 ft in both orthogonal directions, and is subjected to the roof and floor loads shown below. Using a column load summation table, calculate the cumulative axial loads on a typical interior column. Develop this table using a spreadsheet. Submit a hard copy that is properly formatted with your HW and submit the XLS file by e-mail.

Roof Loads:	2nd \& 3rd floor loads
Dead, D = 20psf	Dead, D = 60psf
Snow, S = 45psf	Live, L = 100psf

All other loads are 0

Column Load Table

Pu1, wu1 = 1.2D+1.6L+0.5S
Pu2, wu2 $=1.2 \mathrm{D}+0.5 \mathrm{~L}+1.6 \mathrm{~S}$

2-14 Using only the loads shown and the weight of the concrete footing only ($\gamma_{\mathrm{conc}}=150 \mathrm{pcf}$), determine the required square footing size, BxB using the appropriate load combination to keep the footing from overturning about point A (i.e. - either load combination 6 or 15 Chapter 2 of the text). Loads shown are service level ($\left.\mathrm{M}_{\mathrm{w}}=0.6 \mathrm{~W}=45 \mathrm{k}-\mathrm{ft}\right)$

$$
\begin{array}{llc}
\mathrm{P}_{\mathrm{D}}:=10 \mathrm{kips} & \mathrm{M}_{\mathrm{W}}:=45 \mathrm{ft} \cdot \mathrm{kips} & \gamma_{\mathrm{conc}}:=150 \mathrm{pcf} \\
\mathrm{~B}:=7.67 \mathrm{ft} & \mathrm{H}:=1.333 \mathrm{ft} & \mathrm{P}_{\mathrm{ftg}}:=\mathrm{B} \cdot \mathrm{~B} \cdot \mathrm{H} \cdot \gamma_{\mathrm{conc}}=11.8 \cdot \mathrm{kips}
\end{array}
$$

Overturning Moment
$\mathrm{OM}:=\mathrm{M}_{\mathrm{W}}=45 \cdot \mathrm{ft} \cdot \mathrm{kips}$

ASD Load Comb

Unity $_{\mathrm{ASD}}:=\frac{(0.6 \cdot \mathrm{RM})}{\mathrm{OM}}=1.113$

Resisting Moment
$R M:=\left(P_{D}+P_{f t g}\right) \cdot \frac{B}{2}=83.5 \cdot \mathrm{ft} \cdot \mathrm{kips}$

LRFD Load Comb

Unity $_{\text {LRFD }}:=\frac{(0.9 \cdot \mathrm{RM})}{\left(\frac{\mathrm{OM}}{0.6}\right)}=1.002 \quad$ must be greater than 1.0

Use B=7.28ft for ASD and 7.67ft for LRFD

2-15.

Given:
Location - Massena, NY; elevation is less than 1000 feet
Total roof DL $=25 \mathrm{psf}$
Ignore roof live load; consider load combination 1.2D+1.6S only
Use normal occupancy, temperature, and exposure conditions
Length of B-1, B-2 is 30 ft .
Find:
a) Flat roof snow load and sloped roof snow load
b) Sliding snow load
c) Determine the depth of the balanced snow load and the sliding snow load on B-1 and B-2
d) Draw a free-body diagram of B-1 showing the service dead and snow loads in PLF
e) Find the factored Moment and Shear in B-1.

Problem 3-1

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{g}}:=60 \mathrm{psf} \\
& \mathrm{C}_{\mathrm{e}}:=1.0 \\
& C_{t}:=1.0 \\
& \mathrm{I}_{\mathrm{S}}:=1.0 \quad \theta:=\operatorname{atan}\left(\frac{10}{12}\right) \cdot\left(\frac{180}{\pi}\right)=39.806 \\
& \mathrm{C}_{\mathrm{S}}:=\frac{5}{3}-\frac{\theta}{45}=0.782 \quad \mathrm{~W}_{\mathrm{SL}}:=60 \mathrm{ft} \\
& \mathrm{P}_{\mathrm{f}}:=0.7 \mathrm{p}_{\mathrm{g}} \cdot \mathrm{C}_{\mathrm{e}} \cdot \mathrm{C}_{\mathrm{t}} \cdot \mathrm{I}_{\mathrm{S}}=42 \mathrm{psf} \quad \mathrm{P}_{\mathrm{S}}:=\mathrm{P}_{\mathrm{f}} \cdot \mathrm{C}_{\mathrm{S}}=32.848 \mathrm{psf} \quad \text { part (a) } \\
& \mathrm{P}_{\mathrm{SL}}:=\frac{0.4 \cdot \mathrm{P}_{\mathrm{f}}-\mathrm{W}_{\mathrm{SL}}}{15 \mathrm{ft}}=67.2 \mathrm{psf} \quad \text { part (b) } \\
& \gamma_{\text {Snow }}:=\frac{0.13}{1 \mathrm{ft}} \cdot \mathrm{p}_{\mathrm{g}}+14 \mathrm{pcf}=21.8 \mathrm{pcf} \\
& \mathrm{~h}_{\text {bal }}:=\frac{\mathrm{P}_{\mathrm{f}}}{\gamma_{\text {Snow }}}=1.927 \mathrm{ft} \quad \mathrm{~h}_{\mathrm{SL}}:=\frac{\mathrm{P}_{\mathrm{SL}}}{\gamma_{\text {Snow }}}=3.083 \mathrm{ft} \quad \text { part (c) } \\
& \mathrm{L}_{\mathrm{B}}:=30 \mathrm{ft} \quad \mathrm{TW}:=6 \mathrm{ft} \quad \mathrm{D}:=25 \mathrm{psf} \\
& { }^{\mathrm{w}} \mathrm{D}:=\mathrm{TW} \cdot \mathrm{D}=150 \mathrm{plf} \quad \mathrm{w}_{\mathrm{S}}:=\mathrm{TW} \cdot \mathrm{P}_{\mathrm{f}}=252 \mathrm{plf} \quad{ }_{\mathrm{w}}^{\mathrm{SL}}, ~:=\mathrm{TW} \cdot \mathrm{P}_{\mathrm{SL}}=403.2 \mathrm{plf} \quad \text { part (d) } \\
& \mathrm{w}_{\mathrm{u}}:=\left(1.2 \cdot \mathrm{w}_{\mathrm{D}}\right)+\left[1.6 \cdot\left({ }^{\mathrm{w}} \mathrm{~S}_{\mathrm{S}}+\mathrm{w}_{\mathrm{SL}}\right)\right]=1228.3 \text { plf } \\
& \mathrm{M}_{\mathrm{u}}:=\frac{\mathrm{w}_{\mathrm{u}} \mathrm{~L}_{\mathrm{B}}^{2}}{8}=138.2 \mathrm{ft} \cdot \mathrm{kips} \quad \quad \mathrm{~V}_{\mathrm{u}}:=\frac{\mathrm{w}_{\mathrm{u}} \mathrm{~L}_{\mathrm{B}}}{2}=18.4 \mathrm{kips} \quad \text { part (e) }
\end{aligned}
$$

2-16.

Given:
Location - Pottersville, NY; elevation is 1500 feet
Total roof DL $=20 \mathrm{psf}$
Ignore roof live load; consider load combination 1.2D+1.6S only
Use normal occupancy, temperature, and exposure conditions

Find:

a) Flat roof snow load
b) Depth and width of the leeward drift and windward drifts; which one controls the design of J-

1?
c) Determine the depth of the balanced snow load and controlling drift snow load
d) Draw a free-body diagram of J-1 showing the service dead and snow loads in PLF

leeward drift windward drift

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{g}}:=70 \mathrm{psf}+10 \mathrm{psf}=80 \cdot \mathrm{psf} \quad \mathrm{C}_{\mathrm{e}}:=1.0 \quad \mathrm{C}_{\mathrm{t}}:=1.0 \quad \mathrm{I}_{\mathrm{s}}:=1.0 \\
& \mathrm{P}_{\mathrm{f}}:=0.7 \mathrm{p}_{\mathrm{g}} \cdot \mathrm{C}_{\mathrm{e}} \cdot \mathrm{C}_{\mathrm{t}} \cdot \mathrm{I}_{\mathrm{S}}=56 \cdot \mathrm{psf} \quad \text { part (a) } \\
& \mathrm{L}_{\mathrm{uW}}:=200 \mathrm{ft} \quad \mathrm{~h}_{\mathrm{dW}}:=0.75 \mathrm{ft} \cdot\left[0.43 \cdot\left(\frac{\mathrm{~L}_{\mathrm{uW}}}{1 \mathrm{ft}}\right)^{\frac{1}{3}} \cdot\left[\left(\frac{\mathrm{p}_{\mathrm{g}}+10 \mathrm{psf}}{1 \mathrm{psf}}\right)^{\frac{1}{4}}\right]-1.5\right]=4.684 \mathrm{ft} \\
& \mathrm{~L}_{\mathrm{uL}}:=150 \mathrm{ft} \quad \mathrm{~h}_{\mathrm{dL}}:=1 \mathrm{ft} \cdot\left[0.43 \cdot\left(\frac{\mathrm{~L}_{\mathrm{uL}}}{1 \mathrm{ft}}\right)^{\frac{1}{3}} \cdot\left[\left(\frac{\mathrm{p}_{\mathrm{g}}+10 \mathrm{psf}}{1 \mathrm{psf}}\right)^{\frac{1}{4}}\right]-1.5\right]=5.537 \mathrm{ft} \quad \operatorname{part}(b) \\
& \gamma_{\text {snow }}:=\frac{0.13}{1 \mathrm{ft}} \cdot \mathrm{p}_{\mathrm{g}}+14 \mathrm{pcf}=24.4 \cdot \mathrm{pcf} \quad \mathrm{~h}_{\text {bal }}:=\frac{\mathrm{P}_{\mathrm{f}}}{\gamma_{\text {snow }}}=2.295 \mathrm{ft} \\
& \mathrm{w}_{\mathrm{W}}:=4 \cdot \mathrm{~h}_{\mathrm{dW}}=18.736 \mathrm{ft} \quad \quad \mathrm{w}_{\mathrm{L}}:=4 \cdot \mathrm{~h}_{\mathrm{dL}}=22.148 \mathrm{ft} \quad \operatorname{part}(b)
\end{aligned}
$$

The Leeward drift will control the design

$$
\begin{aligned}
& \mathrm{SD}:=\gamma_{\mathrm{snow}} \cdot \mathrm{~h}_{\mathrm{dL}}=135 \cdot 1 \cdot \mathrm{psf} \quad \text { part }(c) \\
& \mathrm{L}_{\mathrm{B}}:=100 \mathrm{ft} \quad \mathrm{TW}:=8 \mathrm{ft} \quad \mathrm{D}:=20 \mathrm{psf} \\
& \mathrm{w}_{\mathrm{D}}:=\mathrm{TW} \cdot \mathrm{D}=160 \cdot \mathrm{plf} \quad \mathrm{w}_{\mathrm{S}}:=\mathrm{TW} \cdot \mathrm{P}_{\mathrm{f}}=448 \cdot \mathrm{plf} \quad \mathrm{w}_{\mathrm{SD}}:=\mathrm{TW} \cdot \mathrm{SD}=1081 \cdot \mathrm{plf} \\
& \mathrm{w}_{\mathrm{u}}:=\left(1.2 \cdot \mathrm{w}_{\mathrm{D}}\right)+\left\lceil 1 \cdot 6 \cdot\left(\mathrm{w}_{\mathrm{S}}+\mathrm{w}_{\mathrm{SD}}\right)\right\rceil=2638 \cdot \mathrm{plf} \quad \quad \operatorname{part}(d) \\
& \mathrm{w}_{\mathrm{uS}}:=1.6 \cdot\left(\mathrm{w}_{\mathrm{S}}+\mathrm{w}_{\mathrm{SD}}\right)=2446 \cdot \mathrm{plf}
\end{aligned}
$$

Problem 2-16 Part (e)

Factored Reactions and Maximum Moment:
$\mathrm{R}_{\mathrm{A}}=63.18 \mathrm{kips}$
$\mathrm{R}_{\mathrm{B}}=46.85 \mathrm{kips}$
$\mathrm{M}_{\mathrm{u}, \max }=1207.6 \mathrm{ft}-\mathrm{kips}$ (occurs at 51.55 ft from B)

