\qquad

1. $\$ 10,000$ was deposited into an investment account earning interest at a nominal rate of 9% compounded monthly for eight years. How much interest was earned in the fifth year?
A. $\$ 1468.72$
B. $\$ 1342.76$
C. $\$ 1303.11$
D. $\$ 1270.42$
2. You invest $\$ 1500$ today and another $\$ 200018$-months from today in a fund earning $j_{4}=8 \%$ for the first 18 months followed by $j_{2}=6 \%$ thereafter. How much do you have at the end of 4 years?
A. $\$ 4007.79$
B. $\$ 4274.59$
C. $\$ 4276.84$
D. $\$ 4377.73$
3. A loan of $\$ 15,000$ is taken out with interest at $j_{4}=8 \%$. What is the total amount of interest due on the loan in the second year?
A. $\$ 1338.41$
B. $\$ 1298.92$
C. $\$ 1296.00$
D. $\$ 1200.00$
4. Jim deposits $\$ 5000$ in an account earning $j_{12}=9 \%$. He leaves it there for 5 years. How much interest did he earn in the last year (that is, between years 4 and 5)?
A. $\$ 671.38$
B. $\$ 644.13$
C. $\$ 635.21$
D. $\$ 565.82$
5. You invest $\$ 5000$ into a fund paying interest at $\mathrm{j}_{6}=9 \%$. How much is in the fund after 3 years?
A. $\$ 6350.00$
B. $\$ 6475.15$
C. $\$ 6511.30$
D. $\$ 6536.70$
6. What is the total amount of interest earned between the end of 18 months and the end of 36 months on an investment of $\$ 1000$ if the interest rate is $j_{12}=9 \%$?
A. $\$ 308.65$
B. $\$ 164.69$
C. $\$ 154.94$
D. $\$ 143.96$
7. A long-term promissory note for $\$ 40,000$ is taken out on June 15,2010 . The interest rate on the note is $j_{4}=7 \%$ and the note is due on Dec 15,2015 . What is the maturity value of the note?
A. $\$ 58,597.50$
B. $\$ 58,589.15$
C. $\$ 58,398.79$
D. $\$ 57,581.47$
8. A long-term promissory note for $\$ 40,000$ is taken out on June 15,2010 . The interest rate on the note is $j_{4}=7 \%$ and the note is due on December 15,2015 . What is the maturity value of the note?
A. $\$ 58,589.15$
B. $\$ 58,398.79$
C. $\$ 58,597.50$
D. $\$ 57,581.47$
9. You deposit $\$ 10000$ today in a fund that earns interest at $j_{1}=4.5 \%$. However, at the end of every year, an expense charge of 0.50% of the accumulated amount of the fund is withdrawn. How much do you have at the end of 3-years?
A. $\$ 11,241.34$
B. $\$ 11,248.64$
C. $\$ 11,354.60$
D. $\$ 11,411.66$
10. What simple interest rate, r, is equivalent to $j_{4}=14 \%$ over 18 months?
A. 14.48%
B. 14.75%
C. 15.28%
D. 16.74%
11. You shop around for the best interest rate and have narrowed your choices to the following:

Bank I: $j_{1}=12 \%$
Bank II: $j_{4}=11.55 \%$
Bank III: $j_{12}=11.30 \%$

You wish to have $\$ S$ in 3 years. What is the present value of S ? Put the banks in order, from lowest to highest present value of S.
A. I $<$ II $<$ III
B. III $<$ II $<$ I
C. II $<$ I $<$ III
D. III $<$ I $<$ II
12. What simple interest rate, r, is equivalent to $j_{12}=9 \%$ over a 2 -year period?
A. 9.82%
B. 9.41%
C. 9.38%
D. 8.30%
13. You are investing a sum of money. Rank the following interest in order of which one will give you the most interest.
a. $j_{2}=8.00 \%$
b. $j_{12}=7.95 \%$
c. $j_{52}=7.90 \%$
A. $c>b>a$
B. $b>c>a$
C. $a>b>c$
D. $b>a>c$
14. What nominal interest rate compounded semi-annually is equivalent to $j_{52}=13 \%$?
A. 12.60%
B. 13.41%
C. 13.86%
D. 14.34%
15. Which of the following interest rates results in the most interest being charged on a loan?
A. $j_{1}=15.0 \%$
B. $j_{4}=14.2 \%$
C. $j_{12}=14.1 \%$
D. $j_{52}=14.0 \%$
16. What simple interest rate, r, is equivalent to $j_{12}=8 \%$ over 9 months?
A. 8.30%
B. 8.22%
C. 7.92%
D. 4.62%
17. What simple interest rate r is equivalent to $j_{4}=8 \%$ if money is invested for 4 years?
A. 8.24%
B. 8.33%
C. 9.01%
D. 9.32%
18. What simple interest rate r is equivalent to $j_{12}=9 \%$ if money is invested for 3.5 years?
A. 8.96%
B. 9.83%
C. 10.53%
D. 11.27%
19. What simple interest rate, r, is equivalent to $j_{6}=8 \%$ over 8 months?
A. 16.77%
B. 8.16%
C. 15.08%
D. 7.74%
20. Rank the following interest rates in the order in which they would give the highest to lowest amount of interest on an investment:
a. $j_{2}=15.25 \%$
b. $j_{4}=15.1 \%$
c. $j_{12}=14.85 \%$
A. $a>b>c$
B. $c>a>b$
C. $c>b>a$
D. $b>c>a$
21. Your portfolio of investments consists of a $\$ 10,000$ loan due at the end of 5 years with interest at $j_{1}=10 \%$, and a $\$ 25,000$ loan due at the end of 10 years with interest at $j_{12}=6 \%$. What is the present value of this portfolio at $\dot{j}=8 \%$? (Answer to nearest dollar)
A. $\$ 18,165$
B. $\$ 28,109$
C. $\$ 31,639$
D. $\$ 32,029$
22. You buy a motor boat worth $\$ 13,400$. You can pay cash, or chose one of two payment options:

Option 1: Pay $\$ 10,000$ in one year and $\$ 5000$ in two years
Option 2: Pay $\$ 17,400$ in 3 years

If the interest rate on both options is $j_{12}=9 \%$, which one should you take and how much cheaper is it compared to paying cash?
A. Best option is to pay cash
B. $1 ; \$ 17.19$
C. $1 ; \$ 78.46$
D. 2; $\$ 103.81$
23. A woman plans to withdraw $\$ 1800$ 18-months from now and $\$ 2400$ 36-months from now. How much does she need to deposit today if the interest rate is $j_{12}=12 \%$ for the first 2 years and $j_{12}=$ 6% thereafter?
A. $\$ 3182.25$
B. $\$ 3285.18$
C. $\$ 3510.38$
D. $\$ 3765.40$
24. A promissory note for $\$ 10,000$, dated July 1,2007 , is due in four years with interest at $j_{2}=8 \%$. On October 1,2008 , it was sold to an investor who discounted the note at $j_{4}=9 \%$. What was the purchase price of the note on October 1, 2008?
A. $\$ 10,714.46$
B. $\$ 10,955.53$
C. $\$ 11,176.77$
D. $\$ 11,975.31$
25. A company has a loan that is due on December 30, 2009. At that time they are required to pay $\$ 20,000$. What was the original amount of the loan if it was taken out on September 30, 2007 at j_{4} $=12 \%$?
A. $\$ 15,290.08$
B. $\$ 15,328.33$
C. $\$ 15,498.49$
D. $\$ 15,516.81$
26. You take out a loan of $\$ 25,000$ from the ABC company. It is due in 5 years with interest at $j_{2}=$ 6%. After 18 months, ABC sells your loan to the XYZ company at a price that will earn XYZ a rate of return of $j_{4}=5 \%$. What price does $X Y Z$ pay?
A. $\$ 28,264.75$
B. $\$ 28,234.61$
C. $\$ 27,318.18$
D. $\$ 26,934.58$
27. A long term promissory notes for $\$ 20000$ is signed on April 15, 2010. It is due on October 15, 2013 at $\mathrm{j}_{2}=6 \%$. The maturity value of the note is $\$ 24597.48$. The note is sold on April 15, 2011 to a bank that discounts the note at $\mathrm{j}_{4}=8 \%$. What are the proceeds?
A. $\$ 21,218.00$
B. $\$ 20,582.07$
C. $\$ 20,292.30$
D. $\$ 20,178.50$
28. An individual borrowed $\$ 10,000$ nine months ago and another $\$ 6,000$ three months ago and he wishes to pay off this loan with a payment of $\$ X$ today. You are given that $j_{2}=10 \%$ and that the practical method of crediting/charging interest is used. Determine $\$ X$.
A. $\$ 16,918.90$
B. $\$ 16,912.50$
C. $\$ 16,907.46$
D. $\$ 16,900.26$
29. What is the accumulated value of $\$ 15,000$ over 6 years and 5 months if $j_{4}=10 \%$ and the exact method of accumulating is used? (Answer to the nearest dollar)
A. $\$ 27,411$
B. $\$ 27,981$
C. $\$ 28,039$
D. $\$ 28,271$
30. You invest $\$ 50,000$ today in a fund earning $j_{4}=12 \%$. How much have you accumulated 65 months later using the practical method?
A. $\$ 81,038$
B. $\$ 93,945$
C. $\$ 94,866$
D. $\$ 94,875$
31. What is the present value of $\$ 100,000$ due exactly 4 years and 8 months from today if $j 2=9 \%$ and the practical method of discounting is used?
A. $\$ 66,324.55$
B. $\$ 66,310.35$
C. $\$ 66,296.00$
D. $\$ 65,358.66$
32. You invest $\$ 20,000$ today in a fund earning interest at $j_{1}=4 \%$. How much will you have in 5 years, 270 days if the exact method of accumulating is used?
A. $\$ 25,063.05$
B. $\$ 25,059.46$
C. $\$ 25,053.05$
D. $\$ 25,049.36$
33. You invest $\$ 50,000$ today in a fund earning $j_{4}=12 \%$. How much have you accumulated 5 years and 5 months later using the exact method?
A. $\$ 93,935.73$
B. $\$ 93,944.88$
C. $\$ 94,865.84$
D. $\$ 94,875.02$
34. The maturity value of a promissory note due on Sept. 14,2010 is $\$ 6200$. What are the proceeds of the note using the practical (approximate) method on Jun. 2, 2007 if $j_{2}=10 \%$?
A. $\$ 4454.51$
B. $\$ 4498.36$
C. $\$ 4502.80$
D. $\$ 4760.25$
35. What is the accumulated value of $\$ 5000$ at the end of 4 years, 11 months if $\dot{j}_{4}=9 \%$ using the exact method?
A. $\$ 7588.52$
B. $\$ 7638.07$
C. $\$ 7708.09$
D. $\$ 7744.89$
36. Using the exact method, what is the present value of $\$ 100,000$ due in 19 months if $\mathrm{j}_{4}=12 \%$? (Answer to nearest dollar.)
A. $\$ 82,935$
B. $\$ 82,927$
C. $\$ 82,919$
D. $\$ 82,901$
37. What is the accumulated value of $\$ 5000$ for 20 months at $\dot{j}=11 \%$ using the practical method?
A. $\$ 5978.85$
B. $\$ 5976.93$
C. $\$ 5957.00$
D. $\$ 5949.88$
38. Three payments of $\$ 10,000$ are made at the end of 3,9 and 15 months respectively. Calculate the total accumulated value of these payments at the end of two years using the exact method with $j_{6}=6 \%$.
A. $\$ 30,756.65$
B. $\$ 32,334.08$
C. $\$ 32,340.10$
D. $\$ 34,869.82$
39. A loan of $\$ A$ is taken out today. You are given that this loan is to be paid off with a payment of $\$ 20,000$ in 3 years and 8 months. Determine A, if $\dot{j}=10 \%$ and the practical method of crediting/charging interest is used.
A. $\$ 13,988.01$
B. $\$ 13,984.33$
C. $\$ 13,980.62$
D. $\$ 13,762.40$
40. Mrs. Singh owes Mr. Valdy $\$ 55,513.78$ in 14-months. Mr. Valdy agrees to let her repay the loan with a payment of $\$ 35,000$ in 6-months, $\$ 10,000$ in 8 -months and $\$ X$ in 14 -months. If money is worth $j_{4}=6 \%$, what is the value of X, using 14-months as the focal date along with the exact method of crediting/charging interest?
A. \$8793.97
B. $\$ 9204.40$
C. $\$ 9230.06$
D. $\$ 9794.03$
41. A long term promissory note is due on April 5,2013 . The maturity value of the note on that date is $\$ 4720.56$. On June 7, 2010, the holder of the notes sells it to a bank who discounts the note at j_{2} $=14 \%$. Using the practical method of crediting/charging interest, calculate the proceeds of the sale.
A. $\$ 3217.60$
B. $\$ 3218.30$
C. $\$ 3219.24$
D. $\$ 3221.52$
42. A promissory note with a maturity value of $\$ 20,000$ is sold to a bank 32 -months before maturity. The bank discounts the note using $j_{2}=16 \%$. What are the proceeds, if the practical method is used?
A. $\$ 13,275.57$
B. $\$ 13,258.11$
C. $\$ 13,266.92$
D. $\$ 12,939.48$
43. A non-interest bearing long term promissory note is due on February 1, 2011. The loan amount was $\$ 30,000$. On October $15^{\text {th }}, 2010$ the note was sold to a bank that charges interest at $j_{12}=$ 12%. How much did the bank pay for this note? Assume the practical (or approximate) method is used for fractional time periods.
A. $\$ 28,962.10$
B. $\$ 28,952.61$
C. $\$ 28,829.41$
D. $\$ 28,675.35$
44. A non-interest bearing long term promissory note is due on February 1, 2011. The loan amount was $\$ 30,000$. On October $15^{\text {th }}, 2010$ the note was sold to a bank that charges interest at $j_{12}=$ 12%. How much did the bank pay for this note? Assume the exact method is used for fractional time periods.
A. $\$ 28,959.25$
B. $\$ 28,973.20$
C. $\$ 28,977.85$
D. $\$ 29,104.21$
45. Using the practical method, what is the accumulated value of $\$ 20,000$ over 7 years and 10 months if the investment earns interest at $j_{2}=10 \%$?
A. $\$ 42,898.52$
B. $\$ 42,953.22$
C. $\$ 42,964.52$
D. $\$ 44,350.47$
46. A loan of $\$ A$ is taken out today. The loan is to be paid off with a payment of $\$ 20,000$ in 44 months. If the interest rate on the loan is $\mathrm{j}_{2}=10 \%$ and the practical method of crediting/charging interest is used, what is the value of A ?
A. $\$ 13,988.01$
B. $\$ 13,762.40$
C. $\$ 13,984.33$
D. $\$ 13,980.62$
47. An individual borrowed $\$ 10000$ nine months ago and another $\$ 6000$ three months ago and he wishes to pay off this loan with a payment of $\$ X$ today. You are given that $j_{2}=10 \%$ and that the practical method of crediting/charging interest is used. Determine $\$ X$.
A. $\$ 16918.90$
B. \$16 912.50
C. $\$ 16907.46$
D. $\$ 16900.26$
48. Mrs. Singh owes Mr. Valdy $\$ 55513.78$ in 14 -months. Mr. Valdy agrees to let her repay the loan with a payment of $\$ 35000$ in 6 -months, $\$ 10000$ in 10-months and $\$ \mathrm{X}$ in 14-months. If money is worth $\mathrm{j}_{4}=6 \%$, what is the value of X , using 14 -months as the focal date along with the exact method of crediting/charging interest?
A. $\$ 8894.58$
B. $\$ 8895.72$
C. \$8896.37
D. $\$ 8897.69$
49. A lump sum of $\$ 25,000$ is due in 4 -years and 5 months. What is the present value of this amount using the practical method if the interest rate is $\mathrm{j}_{2}=8 \%$?
A. $\$ 17,681.77$
B. $\$ 17,679.86$
C. $\$ 17,677.99$
D. $\$ 17,685.52$
50. What is the present value of $\$ 100,000$ due in 5 -years and 10 -months using the practical method if the interest rate is $j_{4}=12 \%$?
A. $\$ 49,685.31$
B. $\$ 50,167.50$
C. $\$ 50,172.39$
D. $\$ 50,177.24$
51. You deposit $\$ 1000$ today in an account that pays interest at $j_{2}=8 \%$ for the next 5 years and $j_{2}=$ 6% thereafter. How many complete interest periods will it take for you to accumulate at least double your original investment?
A. 11 periods
B. 18 periods
C. 21 periods
D. 24 periods
52. You invest $\$ 2130.22$ today. Four and a half years later, you see that this investment has grown to $\$ 3316.08$. What nominal rate of interest, j_{12}, have you been earning?
A. 9.25%
B. 9.88%
C. 10.08%
D. 10.33%
53. A $\$ 2000$ loan is to be repaid with payments of $\$ 1200$ in 1 year, $\$ 800$ in 4 years, and $\$ 400$ in n years, assuming a nominal interest rate of 6% compounded annually. Determine n.
A. 4.59
B. 6.37
C. 9.18
D. 14.74
54. $\$ 15,000$ is invested into an account that earns interest at $j_{4}=x \%$. There are no other deposits made into the account. At the end of 15 years, the accumulated value of the account is $\$ 45,000$. Determine x.
A. 1.85%
B. 2.00%
C. 7.39%
D. 8.00%
55. A deposit of $\$ 100$ is made into an account earning $j_{12}=18 \%$. Another $\$ 100$ is deposited into a $2^{\text {nd }}$ account earning $j_{2}=10 \%$. At what time, n (where n is in years), would the accumulated value of the first account be twice as much as the accumulated value in the $2^{\text {nd }}$ account? (Answer in years)
A. 8.5
B. 9.3
C. 9.9
D. 10.2
56. How long does it take for a loan of $\$ 5000$ to accumulate $\$ 1000$ of interest if $\dot{j}=10 \%$?
A. 1 year, 10 months, 13 days
B. 1 year, 10 months, 29 days
C. 3 years, 8 months, 26 days
D. 3 years, 9 months, 28 days
57. An investment doubles in $91 / 2$ years. What nominal rate of interest j_{4} is being earned?
A. 7.32%
B. 7.36%
C. 7.43%
D. 7.57%
58. You invest $\$ 1000$ today at $j_{12}=6 \%$. After 2 years, the interest rate changes to $j_{12}=12 \%$. How many years from today will it take the $\$ 1000$ to grow to $\$ 10,000$?
A. 21.28 years
B. 20.28 years
C. 19.28 years
D. 18.28 years
59. How long will it take for $\$ 750$ to accumulate to $\$ 1000$ if $j 2=9 \%$?
A. 6 years, 175 days
B. 6 years, 196 days
C. 3 years, 88 days
D. 3 years, 98 days
60. You wish to have $\$ 4000$ in 3-years time. If you invest $\$ 3000$ today, what nominal rate j_{4} must you earn on your investment to reach your goal?
A. 9.62%
B. 9.71%
C. 10.06%
D. 11.11%
61. If money triples in 6 years, what rate of interest, j_{2}, is being earned?
A. 9.6%
B. 10.0%
C. 19.2%
D. 20.1%
62. $\$ 4000$ is deposited into an account earning $j_{2}=8 \%$ for the first 2 years and $j_{2}=10 \%$ thereafter. How long will it take for it to grow to $\$ 9041.67$?
A. 6 yrs, 9 months
B. $8 \mathrm{yrs}, 9$ months
C. $13 \mathrm{yrs}, 6$ months
D. $17 \mathrm{yrs}, 6$ months
63. If money triples in value in 8 years, what nominal rate of interest compounded semi-annually is being earned?
A. 7.11%
B. 7.36%
C. 14.22%
D. 14.72%
64. $\$ 25,000$ was deposited into an investment account earning interest at a nominal rate of $j_{2}=x \%$ for 10 years. You are given that the corresponding total amount of interest earned in the first four years is $\$ 9,012.22$. Determine x.
A. 6.25%
B. 6.55%
C. 7.85%
D. 8.00%
65. A car insurance company charges you a premium of $\$ 1452$ a year for your car insurance policy. You have two options. Option 1 is to pay the $\$ 1452$ in cash today. Option 2 is to make three payments of $\$ 499$ at the following times: today, 3-months from now and 6-months from now. What nominal rate of interest, j_{4}, are you being charged?
A. 11.73%
B. 12.12%
C. 12.53%
D. 13.06%
66. Which of the following rates would lead to the shortest length of time (n, in years) needed to double an initial investment of $\$ 1000$?
A. $\mu=9.15 \%$
B. $\dot{j}_{2}=8.90 \%$
C. $j_{4}=8.84 \%$
D. $j_{12}=8.77 \%$
67. If money doubles at a certain rate of interest compounded monthly in 6 years, how long will it take for the same amount of money to triple in value?
A. 10.40 years
B. 9.51 years
C. 8.35 years
D. Cannot be determined
68. What is the nominal rate of interest convertible quarterly at which the discounted value (present value) of $\$ 15,000$ due at the end of 186 months is $\$ 5000$?
A. 9.56%
B. 7.39%
C. 7.27%
D. 7.15%
69. You are given that at a certain rate j_{1}, money will double itself in 12-years. At this same rate j_{1}, how many years will it take for $\$ 1500$ to accumulate $\$ 700$ of interest?
A. 8.2 years
B. 6.6 years
C. 5.6 years
D. 4.2 years
70. You deposit $\$ 1000$ today in an account that pays interest at $\mathrm{j}_{2}=8 \%$ for the next 5 -years and $\mathrm{j}_{2}=$ 6% thereafter. How long in total (in years and days) will it take for you to at least double your original investment?
A. 10 years, 34 days
B. 10 years, 67 days
C. 10 years, 79 days
D. 10 years, 158 days
71. A car insurance company charges you a premium of $\$ 1452$ a year for your car insurance policy. You have two options. Option 1 is to pay the $\$ 1452$ in cash today. Option 2 is to make two payments of $\$ 749$ at the following times: today and 6 -months from today. What nominal rate of interest, j 4 , are you being charged?
A. 11.73%
B. 13.06%
C. 12.88%
D. 12.12%
72. Paul deposited $\$ 1000$ in a savings account paying interest at $j_{1}=4.5 \%$. The account has now grown to $\$ 1246.18$. If he had been able to invest the same amount over twice as long in a fund paying interest at $\mathrm{j}_{1}=5.5 \%$, to what amount would his investment now have accumulated?
A. $\$ 1498.43$
B. $\$ 1882.35$
C. $\$ 1653.64$
D. $\$ 1708.14$
73. You borrows $\$ 10,000$ today at $j_{2}=8 \%$. You pay back $\$ 7000$ at the end of 2 -years and another $\$ 7000$ at the end of n-years (from today). What is the value of n ? (years, days)
A. 7 yrs, 30 days
B. 7 yrs, 60 days
C. $14 \mathrm{yrs}, 30$ days
D. $14 \mathrm{yrs}, 60$ days
74. Mr. Harry Leggs borrows $\$ 5000$ today, due with interest at $j_{4}=8 \%$ in one lump sum at the end of 2 years. Instead, Mr. Leggs wishes to pay $\$ 2000$ six months from today and $\$ X$ in 18 months. If money is worth $j_{12}=6 \%$, what is X ?
A. $\$ 3252.09$
B. $\$ 3346.29$
C. $\$ 3465.95$
D. $\$ 3562.23$
75. A loan of $\$ 5000$ is taken out today. It is due with interest at $j_{4}=8 \%$ in 2 years. Instead, the borrower negotiates with the lender to pay $\$ 2500$ in 1 year and $\$ X$ in 3 years. If the lender can reinvest any payment at $j_{2}=5 \%$, what is the value of X ?
A. $\$ 2493.59$
B. $\$ 3038.93$
C. $\$ 3395.34$
D. $\$ 3581.68$
76. A woman borrowed money and owes $\$ 3000$ one-year from now and $\$ 3000$ three-years from now. The loan is renegotiated so that the woman can instead pay $\$ X$ two-years from now and $\$ 4000$ four-years from now which will fully pay back the loan. If the interest rate on the loan is $j_{2}=8 \%$, what is the value of X ?
A. $\$ 2599.25$
B. $\$ 2588.42$
C. $\$ 2580.78$
D. $\$ 2306.39$
77. A debt of $\$ 5700$ is due, with interest at $j_{2}=8 \%$, in three years. It is agreed instead that the loan will be repaid with a payment of $\$ X$ in one year and $\$ 3000$ in two years. If money is worth $j_{4}=4 \%$, what is the value of X ?
A. $\$ 3282.18$
B. $\$ 3348.50$
C. $\$ 3391.45$
D. $\$ 3777.51$
78. Payments of $\$ 1000$ due in 6 months, $\$ 1500$ due in 9 months, and $\$ 1200$ due in 15 months are to be exchanged for a single payment $\$ X$ due in 12 months. What is X if $j_{4}=6 \%$?
A. $\$ 3770.73$
B. $\$ 3734.99$
C. $\$ 3809.54$
D. $\$ 3927.05$
79. You borrow $\$ 2000$ today. The loan is due in 3 years, with interest at $j_{1}=9 \%$. It is agreed that you will instead pay $\$ 1000$ one year from now and $\$ X$ two years from now. If money is worth $j_{2}=6 \%$, what is the value of X ?
A. $\$ 1190.12$
B. $\$ 1286.20$
C. $\$ 1380.48$
D. $\$ 1529.16$
80. A debt of $\$ 7000$ is due with interest at $j_{2}=8 \%$ at the end of 3 years. To repay this debt, a payment of $\$ 1500$ is made at the end of 1 year, followed by a payment of $\$ X$ at the end of 2 years. If money is worth $j_{4}=10 \%$, what is the value of X so that the loan is fully paid off?
A. $\$ 4685.94$
B. $\$ 4713.64$
C. $\$ 5172.40$
D. $\$ 6873.10$
81. A student borrows $\$ 2,000$ today and they agree to pay off the loan with one payment of $\$ 2,590.06$ to be made at the end of 3 years time. It is then agreed that, instead of paying off the loan with one payment, the student can pay off the loan with a payment of $\$ 1000$ one year from now and $\$ X$ two years from now. Given that $j_{2}=6 \%$, determine $\$ X$.
A. $\$ 1190.12$
B. $\$ 1286.20$
C. $\$ 1380.48$
D. $\$ 1529.16$
82. You borrow $\$ 2000$ today. This loan is due in 3 -years with interest at $j_{1}=9 \%$. It is agreed that you will instead pay $\$ 1000$ one-year from now and $\$ X$ two-years from now. If money is worth $j_{2}=6 \%$, what is the value of X ?
A. $\$ 1190.12$
B. $\$ 1286.20$
C. $\$ 1380.48$
D. $\$ 1529.16$
83. You owe your parents $\$ 2500$ today. You agree to pay this back by making a payment of $\$ 500$ now, $\$ 600$ six months from now and $\$ X 18$-months from now. What is X if $j_{4}=6 \%$?
A. $\$ 1417.60$
B. $\$ 1473.22$
C. $\$ 1482.36$
D. $\$ 1550.07$
84. You borrow $\$ 5000$ today. The loan is due in 5 years, with interest at $j_{1}=7 \%$. It is agreed that you can instead pay $\$ 1000$ one year from now, $\$ X$ two years from now and $\$ 2000$ three years from now. If money is worth $j_{4}=8 \%$, what is the value of X ?
A. $\$ 2599.39$
B. $\$ 2648.80$
C. $\$ 2788.70$
D. $\$ 2794.38$
85. A $\$ 1000$ loan is taken out today. The loan is repaid with a payment of $\$ 400$ at the end of the 1 st year, $\$ 800$ at the end of the $5^{\text {th }}$ year, and a payment of $\$ X$ at the end of the $10^{\text {th }}$ year. If $j_{4}=12 \%$, what is X ?
A. $\$ 220.97$
B. $\$ 657.84$
C. $\$ 737.26$
D. $\$ 1406.54$
86. You borrow $\$ 2500$ today. The loan is due in 5 -years, with interest at $j_{2}=8 \%$. It is agreed that you can instead pay $\$ X$ two years from now and $\$ 1500$ three years from now. If money is worth $j_{12}=$ 6%, what is the value of X ?
A. $\$ 1679.54$
B. $\$ 1537.81$
C. $\$ 1405.04$
D. $\$ 675.25$
87. A woman plans to withdraw $\$ 1800$ 18-months from now, and $\$ 240036$-months from now. How much does she need to deposit today if the interest rate is $j_{12}=12 \%$ for the first 2 years and $j_{12}=$ 6% thereafter?
A. $\$ 3182.25$
B. $\$ 3765.40$
C. $\$ 3510.38$
D. $\$ 3285.18$
88. A loan of $\$ 5000$ is taken out today. It is due with interest at $j_{4}=8 \%$ in 2 years. Instead, the borrower negotiates with the lender to replace this loan with a payment of $\$ 2500$ in 1-year and another payment of $\$ X$ in 3 -years. If the lender can reinvest any payment at $j_{2}=5 \%$, what is the value of X ?
A. $\$ 3038.93$
B. $\$ 2493.59$
C. $\$ 3581.68$
D. $\$ 3395.34$
89. A woman who died left an estate worth $\$ 200000$ to be split among her two children, currently age 8 and 12. Each child is to receive an equal amount, X, from the estate when they reach age 18. If the money can be invested at $\mathrm{j}_{2}=6 \%$, how much does each child receive when they turn $18 ?$ (Answer to nearest dollar)
A. $\$ 142,576$
B. $\$ 159,355$
C. $\$ 179,356$
D. $\$ 180,611$
90. An investment has the following interest rates: $j_{2}=6 \%$ for the first 30 months, followed by $j_{4}=8 \%$ for the next 36 months, followed by $j_{6}=9 \%$ for the last 18 months. What is the equivalent j_{2} earned over the 7 year period?
A. 6.24%
B. 6.68%
C. 7.56%
D. 7.70%
91. A fund pays interest at $j_{1}=5 \%$ for the first 3 years, $j_{4}=10 \%$ for one year, and $j_{12}=12 \%$ for one year. What is the equivalent nominal interest rate, \dot{j}, earned over the 5 years?
A. 7.56%
B. 7.43%
C. 7.40%
D. 7.23%
92. You are investing a sum of money for 4 years. You earn a simple interest rate of $r=10 \%$ for the first 2 years and $j_{12}=6 \%$ for the last 2 years. What is the equivalent effective annual rate of return, j, you earn over each of the 4 years?
A. 8.81%
B. $8.07 \% \%$
C. 7.98%
D. 7.84%
93. You invest a sum of money at $j_{12}=15 \%$ for 3 years, followed by $j_{4}=12 \%$ for 4 years. What equivalent rate of return, j_{1}, do you earn over each of the 7 years?
A. 13.29%
B. 13.50%
C. 13.79%
D. 14.05%
94. You invest $\$ 1000$ in a fund earning $j_{1}=6 \%$ in the first year, $j_{2}=x \%$ in the $2^{\text {nd }}$ year, and $j_{4}=8 \%$ in the $3^{\text {rd }}$ year. If the accumulated value is $\$ 1264.98$ after three years, what is the value of $x ?$
A. 10.00%
B. 10.25%
C. 10.50%
D. 10.75%
95. $\$ P$ is deposited today in a fund which earns $\dot{j}_{12}=6 \%$ for the $1^{\text {st }}$ year, $j_{4}=6 \%$ for the $2^{\text {nd }}$ year and $\dot{I}_{2}=6 \%$ thereafter. At the end of 4 years, there is $\$ 12,000$ in the fund. What is P ?
A. $\$ 9461.84$
B. $\$ 9505.12$
C. $\$ 9747.82$
D. $\$ 10,038.06$
96. Jim Dandy invests a sum of money today. He earns the following interest rates over the next 5years:
$\dot{k}=10 \%$ for the first $2-$ years
$j_{4}=8 \%$ for the next 2-years
$\dot{\mu}_{12}=6 \%$ for the last year

What annual effective rate of return, $j 1$, did Jim earn over the 5 -year period?
A. Less than 8\%
B. 8\% or more, but less than 8.5\%
C. 8.5% or more, but less than 9%
D. more than 9%
97. The 1996 Canada Savings Bond issue offered the following annual rates, guaranteed over 10 years: 3% in the first year, followed by $4 \%, 5 \%, 6 \%, 6.50 \%, 6.75 \%, 7 \%, 7,25 \%, 8 \%$ and 8.75% in the $10^{\text {th }}$ year. If you buy one of these bonds today and cash it in after 5 years, what annual rate of return do you earn?
A. 4.89%
B. 5.39%
C. 6.21%
D. 6.50%
98. A single deposit of $\$ 25,000$ is made into an account that earns interest at $j_{4}=7 \%$ for one year, j_{2} $=6 \%$ for the next year and $j_{6}=3 \%$ thereafter. How much interest is earned in the fourth year?
A. $\$ 143.93$
B. $\$ 863.58$
C. $\$ 889.82$
D. $\$ 916.85$
99. An investment has the following interest rates: $j_{4}=8 \%$ for the first 2 years, followed by $j_{2}=8 \%$ for the next 4 years,, followed by $j_{12}=6 \%$ for the last 28 months. What is the equivalent nominal rate of interest, compounded 3 times a year, j, earned over this time period?
A. 5.56%
B. 7.43%
C. 9.99%
D. 11.31%
100. You invest $\$ 1000$ for 3 years in a fund earning $j_{1}=6 \%$ in the first year, $j_{2}=x \%$ in the second year, and $j_{4}=8 \%$ in the third year. If the accumulated value is $\$ 1264.98$ after three years, what is the value of $x ?$
A. 10.00%
B. 10.25%
C. 10.50%
D. 10.75%
101. What is the effective annual rate, j, over 7 years that is equivalent to $j 6=6 \%$ for the first two years, $j_{12}=9 \%$ for the next three years, and $j_{2}=4 \%$ for the last two years?
A. 6.00%
B. 6.31%
C. 6.69%
D. 6.91%
102. What is the equivalent effective annual rate, j, over 8 -years that is equivalent to $j_{6}=8 \%$ for the first three years, $j_{12}=6 \%$ for the next three years, and $j_{2}=5 \%$ for the last two years?
A. 6.02%
B. 6.13%
C. 6.50%
D. 6.67%
103. You invest some money and earn the following rates of interest: simple interest of 15% for 9 months, followed by $j_{6}=12 \%$ for 18 months, followed by $j_{4}=5 \%$ for 9 months. What is the equivalent rate of interest, \dot{j} earned over the 36 months?
A. 10.97%
B. 11.03%
C. 11.06%
D. 11.23%
104.An investment has the following interest rates: $\mathrm{j}_{4}=8 \%$ for the first 2 -years, followed by $\mathrm{j}_{2}=8 \%$ for the next 4 -years, followed by $j_{12}=6 \%$ for the last 28 -months. What is the equivalent nominal rate of interest, compounded 3 times a year, j_{3}, earned over this time period of 100 months?
A. 9.99%
B. 7.43%
C. 5.56%
D. 11.31%
105. Jackie invested $\$ 500$ in an investment fund that pays interest at $\mathrm{j}_{2}=5.3 \%$ for the first two years, $\mathrm{j}_{12}=7 \%$ for the next three years, and $\mathrm{j}_{365}=4.5 \%$ for the last year. What effective interest rate, j , did she earn over the 6 years?
A. 6.17%
B. 7.23%
C. 6.78%
D. 6.01%
106. An investment earns the following interest rates: 10% simple interest for 24 months, followed by 8% compounded quarterly for 36 months. What is the equivalent nominal rate compounded semiannually that is earned over the 5 -years?
A. 7.34%
B. 7.49%
C. 8.58%
D. 8.76%
107.Suppose the inflation rate in a country is 1% per month. How many years will it take for the purchasing power of $\$ 1$ today to be cut in half?
A. 11.62
B. 9.20
C. 6.12
D. 5.81
108.If inflation is 3.4% per year, what does the purchasing power of $\$ 1$ today become in 10 years?
A. $\$ 0.716$
B. $\$ 0.746$
C. $\$ 1.340$
D. $\$ 1.397$
109.If there will be 3 times as many fruit flies in a vegetable garden in 10 days as there are today, what rate of growth, compounded twice a day, does this represent?
A. 11.29%
B. 11.61%
C. 12.29%
D. 23.22%
110.A person invests $\$ 2000$ today in a fund earning interest at $j_{1}=6 \%$. If the rate of inflation is 2.1% in the first year and 3.0% in the second year, how much is the investment worth, in real terms (after taking account of inflation), at the end of two years?
A. $\$ 2131.30$
B. $\$ 2136.87$
C. $\$ 2138.15$
D. $\$ 2140.34$
111.Suppose the inflation rate is 0.8% per half year and you can invest money at $j_{2}=6 \%$. If you invested $\$ 100,000$ at the start of the year, how much will you have accumulated, in "real" terms (after taking into account inflation), at the end of the year?
A. $\$ 104,324.14$
B. $\$ 104,330.71$
C. $\$ 104,412.71$
D. $\$ 104,448.40$
112.In 1977, the annual inflation rate in Canada was 9.5%, while one-year interest rates were 7.9%. If you invest $\$ 1000$ at the start of the year, how much money, in real terms, did you have at the end of the year, after adjusting for inflation?
A. $\$ 984.00$
B. $\$ 985.39$
C. $\$ 1014.61$
D. $\$ 1016.00$
113.In 1977, the annual inflation rate in Canada was 9.5%, while one-year interest rates were 7.9%. What was the real rate of return in Canada in 1977?
A. -1.60\%
B. -1.46%
C. 1.46%
D. 1.60\%
114.Jack earns a one-year real rate of return of 2.45% on an investment. If inflation is 2.00% for the year, what nominal rate of return j_{1} did Jack earn for the one-year period?
A. 4.35%
B. 4.40%
C. 4.45%
D. 4.50%
115.In a particular year, the interest rate is 5% and the real rate of return is 3%. What is the rate of inflation for the same year?
A. 2.06%
B. 2.00%
C. 1.94%
D. 1.85%
116.The population of a given country was 24.3 million on January 1, 2001 and on January 1, 2011 it was 27.3 million people and the population growth rate over this time period was $g \%$ compounded annually. At this same rate of growth g, how many more years (from January 1 , 2011) will it take this country's population to reach 30 million people?
A. 8.1 years
B. 9.5 years
C. 9.2 years
D. 18.1 years
117.During the spring growing season, a sunflower plant will increase its size by 60% every 7 days. If a plant is currently 5 cm tall, how tall will/should it be in 25 days?
A. 26.8 cm
B. 31.0 cm
C. 39.1 cm
D. 42.1 cm
118.Jack invested $\$ 1200$ into an account for 5 -years. The account paid interest at $j_{1}=4 \%$ for the first 2 -years and $j_{1}=6 \%$ thereafter. If the annual inflation rate is 2% for each of these 5 -years, what is the annual real rate of interest earned over the 5 -years?
A. 3.92%
B. 3.13%
C. 2.94%
D. 1.96%
119.A person invests in a fund earning interest at $j_{2}=6 \%$. The annual rate of inflation is 2% in year 1 , 2.5% in year 2 , and 3.0% in year 3 . What is the annual real interest rate, compounded once a year, earned over the 3-year period?
A. 3.42%
B. 3.47%
C. 3.50%
D. 3.59%
120.Population growth in a given urban city was 4% for the calendar years 2003 to 2007 inclusive and 3% for the calendar years 2008 to 2010 inclusive. If the population of this city was 664,735 on December 31, 2010, what was the population of this city on December 31, 2002?
A. 500,000
B. 512,193
C. 515,000
D. 520,000
121. Jack invested $\$ 1200$ into an account for 5 -years with interest at $\mathrm{j}_{2}=6 \%$. If the annual inflation rate is 2% for the first 2 -years and 2.5% thereafter, what is the annual real rate of interest earned over the 5 -years?
A. 3.71%
B. 1.96%
C. 3.13%
D. 2.94%
122.The amount of clover on a lawn grows exponentially at a rate of j_{24} (compounded twice a month) such that it doubles every 6-months. If there are 5000 pieces of clover in your lawn today, how many did you have 4-months ago? (Answer to the nearest piece of clover)
A. 1984
B. 3150
C. 3333
D. 3969
123. How much money do you need today in order to have $\$ 3000$ in 21 months time, if interest is compounded continuously at 9% ?
A. $\$ 2741.79$
B. $\$ 2564.34$
C. $\$ 2562.83$
D. $\$ 453.22$
124. You deposit $\$ 10,000$ today in a fund earning interest at $j_{x}=8 \%$. How much will you have accumulated at the end of 21 months?
A. $\$ 11,502.74$
B. $\$ 11,497.40$
C. $\$ 11,441.73$
D. $\$ 10,832.87$
125. You are investing a sum of money. Rank the following interest in order of which one will give you the most interest.
a. $\dot{2}=8 \%$
b. $j_{52}=7.9 \%$
c. $\delta=j_{\infty}=7.85 \%$
A. $b>a>c$
B. $a>c>b$
C. $c>a>b$
D. $b>c>a$
126. You plan to invest $\$ P$ today for 15 months, at which time you wish to $\$ 15,000$. What is the value of P if you can earn interest at 7% compounded continuously?
A. $\$ 13,743.28$
B. $\$ 13,746.78$
C. $\$ 13,783.56$
D. $\$ 13,985.91$
127. You wish to have $\$ 10,00045$ months from now. To accomplish this goal, you deposit $\$ P$ in an account today paying interest continuously at $j_{x}=8 \%$. What is P ?
A. $\$ 9,231.16$
B. $\$ 7408.18$
C. $\$ 7415.56$
D. $\$ 7493.09$
128.What is the value, in 18 months, of an investment of $\$ 10,000$ made today if interest is compounded continuously at 6.5% ?
A. $\$ 32,219.93$
B. $\$ 11,024.11$
C. $\$ 11,021.21$
D. $\$ 10,987.96$
129.What nominal interest rate compounded continuously is equivalent to 10% compounded quarterly?
A. 9.53%
B. 9.75%
C. 9.88%
D. 10.38%

2 Key

1. $\$ 10,000$ was deposited into an investment account earning interest at a nominal rate of 9% compounded monthly for eight years. How much interest was earned in the fifth year?
A. $\$ 1468.72$
B. $\$ 1342.76$
C. $\$ 1303.11$
D. $\$ 1270.42$
/= a.v. at end of 5 years - a.v. at end of 4 years
$=10,000\left[(1.0075)^{60}-(1.0075)^{48}\right]=\$ 1342.76$
2. You invest $\$ 1500$ today and another $\$ 200018$-months from today in a fund earning $j_{4}=8 \%$ for the first 18 months followed by $j_{2}=6 \%$ thereafter. How much do you have at the end of 4 years?
A. $\$ 4007.79$
B. $\$ 4274.59$
C. $\$ 4276.84$
D. $\$ 4377.73$
$S=1500(1.02)^{6}(1.03)^{5}+2000(1.03)^{5}=\$ 4276.84$
3. A loan of $\$ 15,000$ is taken out with interest at $j_{4}=8 \%$. What is the total amount of interest due on the loan in the second year?
A. $\$ 1338.41$
B. $\$ 1298.92$
C. $\$ 1296.00$
D. $\$ 1200.00$
$/=$ a.v. at end of 2 years - a.v. at end of 1 year
$=15,000\left[(1.02)^{8}-(1.02)^{4}\right]=\$ 1338.41$
4. Jim deposits $\$ 5000$ in an account earning $\dot{j}_{12}=9 \%$. He leaves it there for 5 years. How much interest did he earn in the last year (that is, between years 4 and 5)?
A. $\$ 671.38$
B. $\$ 644.13$
C. $\$ 635.21$
D. $\$ 565.82$
/= a.v. at end of 5 years - a.v. at end of 4 years
$=5000\left[(1.0075)^{60}-(1.0075)^{48}\right]=\$ 671.38$
5. You invest $\$ 5000$ into a fund paying interest at $\mathrm{j}_{6}=9 \%$. How much is in the fund after 3 years?
A. $\$ 6350.00$
B. $\$ 6475.15$
C. $\$ 6511.30$
D. $\$ 6536.70$
$S=5000(1+0.09 / 6)^{6 \times 3}=5000(1.015)^{18}=\$ 6536.70$
6. What is the total amount of interest earned between the end of 18 months and the end of 36 months on an investment of $\$ 1000$ if the interest rate is $j_{12}=9 \%$?
A. $\$ 308.65$
B. $\$ 164.69$
C. $\$ 154.94$
D. $\$ 143.96$
$/=1000\left[(1.0075)^{36}-(1.0075)^{18}\right]=\$ 164.69$
7. A long-term promissory note for $\$ 40,000$ is taken out on June 15,2010 . The interest rate on the note is $j_{4}=7 \%$ and the note is due on Dec 15,2015 . What is the maturity value of the note?
A. $\$ 58,597.50$
B. $\$ 58,589.15$
C. $\$ 58,398.79$
D. $\$ 57,581.47$

Jun $15 / 10$ to Jun $15 / 15=5$ yrs $\times 4=20+$ Sep $15+\operatorname{Dec} 15=n=22 S=40,000(1.0175)^{22}=$ \$58,589.15
8. A long-term promissory note for $\$ 40,000$ is taken out on June 15, 2010. The interest rate on the note is $j_{4}=7 \%$ and the note is due on December 15,2015 . What is the maturity value of the note?
A. $\$ 58,589.15$
B. $\$ 58,398.79$
C. $\$ 58,597.50$
D. $\$ 57,581.47$

June 15, 2010 to June 15, $2015=5$ yrs $\times 4=20+$ Sep $15+$ Dec $15=22$ periods
Maturity value $=40000(1.0175)^{22}=\$ 58589.15$
9. You deposit $\$ 10000$ today in a fund that earns interest at $\mathrm{j}_{1}=4.5 \%$. However, at the end of every year, an expense charge of 0.50% of the accumulated amount of the fund is withdrawn. How much do you have at the end of 3-years?
A. $\$ 11,241.34$
B. $\$ 11,248.64$
C. $\$ 11,354.60$
D. $\$ 11,411.66$
$S=10000(1.045)^{3}(1-0.005)^{3}=\$ 11241.34$
10. What simple interest rate, r, is equivalent to $j_{4}=14 \%$ over 18 months?
A. 14.48%
B. 14.75%
C. 15.28%
D. 16.74%
$\left./=[1+r(18 / 12)]=(1+0.14 / 4)^{1.5 \times 4}\right]=(1.035)^{6}$
Which solves for $r=0.152837=15.28 \%$
11. You shop around for the best interest rate and have narrowed your choices to the following:

Bank I: $j_{1}=12 \%$
Bank II: $j_{4}=11.55 \%$
Bank III: $j_{12}=11.30 \%$

You wish to have $\$ S$ in 3 years. What is the present value of S ? Put the banks in order, from lowest to highest present value of S.
A. I $<$ II $<$ III
B. III $<$ II $<$ I
C. II $<$ I $<$ III
D. III $<$ I $<$ II

Bank II: $j=(1+0.1155 / 4)^{4}-1=0.1206=12.06 \%$
Bank III: $j=(1+0.1130 / 12)^{12}-1=0.11904=11.904 \%$
The higher the interest rate, the lower the present value.
Thus, II < I < III
12. What simple interest rate, r, is equivalent to $j_{12}=9 \%$ over a 2 -year period?
A. 9.82%
B. 9.41%
C. 9.38%
D. 8.30%
$[1+r(2)]=(1.0075)^{24}$ which solves for $r=9.82 \%$
13. You are investing a sum of money. Rank the following interest in order of which one will give you the most interest.
a. $\dot{j}=8.00 \%$
b. $j_{12}=7.95 \%$
c. $j_{52}=7.90 \%$
A. $c>b>a$
B. $b>c>a$
C. $a>b>c$
D. $b>a>c$
a. $j=(1.04)^{2}-1=8.16 \%$
b. $j=(1+0.0795 / 12)^{12}-1=8.246 \%$
c. $j=(1+0.0790 / 52)^{52}-1=8.214 \%$

Thus, $\mathrm{b}>\mathrm{c}>\mathrm{a}$
14. What nominal interest rate compounded semi-annually is equivalent to $j_{52}=13 \%$?
A. 12.60%
B. 13.41%
C. 13.86%
D. 14.34%
$j_{2}=2\left[(1+0.13 / 52)^{52 / 2}-1\right]=13.41 \%$
15. Which of the following interest rates results in the most interest being charged on a loan?
A. $\mu_{1}=15.0 \%$
B. $j_{4}=14.2 \%$
C. $\dot{1}_{12}=14.1 \%$
D. $i_{52}=14.0 \%$
B. $j=(1+0.142 / 4)^{4}-1=14.974 \%$
C. $j=(1+0.141 / 12)^{12}-1=15.048 \%$
D. $j=(1+0.14 / 52)^{52}-1=15.006 \%$
16. What simple interest rate, r, is equivalent to $j_{12}=8 \%$ over 9 months?
A. 8.30%
B. 8.22%
C. 7.92%
D. 4.62%
$[1+r(9 / 12)]=(1+0.08 / 12)^{9}$ solves for $r=8.22 \%$
17. What simple interest rate r is equivalent to $j_{4}=8 \%$ if money is invested for 4 years?
A. 8.24%
B. 8.33%
C. 9.01%
D. 9.32%
$1+4 r=(1.02)^{16}$ solves for $r=9.32 \%$
18. What simple interest rate r is equivalent to $j_{12}=9 \%$ if money is invested for 3.5 years?
A. 8.96%
B. 9.83%
C. 10.53%
D. 11.27%
$1+3.5 r=(1.0075)^{42}$ solves for $r=10.53 \%$
19. What simple interest rate, r, is equivalent to $j_{6}=8 \%$ over 8 months?
A. 16.77%
B. 8.16%
C. 15.08%
D. 7.74%
$[1+(8 / 12)]=(1+0.08 / 6)^{4}$, which solves for $r=8.16 \%$
20. Rank the following interest rates in the order in which they would give the highest to lowest amount of interest on an investment:
a. $\dot{2}=15.25 \%$
b. $j_{4}=15.1 \%$
c. $j_{12}=14.85 \%$
A. $a>b>c$
B. $c>a>b$
C. $c>b>a$
D. $b>c>a$
$\dot{j}_{2}=0.1525$ is equivalent to $\dot{j}_{1}=(1.07625)^{2}-1=0.158314$
$\dot{j}_{4}=0.151$ is equivalent to $j_{1}=(1+0.151 / 4)^{4}-1=0.159768$
$\dot{\mu}_{12}=0.1485$ is equivalent to $j_{1}=(1+0.1485 / 12)^{12}-1=0.159036$
Thus, $b>c>a$
21. Your portfolio of investments consists of a $\$ 10,000$ loan due at the end of 5 years with interest at $j_{1}=10 \%$, and a $\$ 25,000$ loan due at the end of 10 years with interest at $j_{12}=6 \%$. What is the present value of this portfolio at $\dot{j}=8 \%$? (Answer to nearest dollar)
A. $\$ 18,165$
B. $\$ 28,109$
C. $\$ 31,639$
D. $\$ 32,029$
a.v. $1=10,000(1.10)^{5}=16,105.10$
a.v. $2=25,000(1.005)^{120}=45,484.92$

Thus, $A=16,105.10(1.04)^{-10}+45,484.92(1.04)^{-20}=\$ 31,638.75$
22. You buy a motor boat worth $\$ 13,400$. You can pay cash, or chose one of two payment options:

Option 1: Pay $\$ 10,000$ in one year and $\$ 5000$ in two years Option 2: Pay $\$ 17,400$ in 3 years

If the interest rate on both options is $\dot{j}_{12}=9 \%$, which one should you take and how much cheaper is it compared to paying cash?
A. Best option is to pay cash
B. $1 ; \$ 17.19$
C. $1 ; \$ 78.46$
D. $2 ; \$ 103.81$

Option 1: $A=10,000(1.0075)^{-12}+5000(1.0075)^{-24}=13,321.54$
Option 2: $A=17,400(1.0075)^{-36}=13,296.19$
Both cheaper than cash, but Option 2 is cheapest by $13,400-13,296.19=\$ 103.81$
23. A woman plans to withdraw $\$ 1800$ 18-months from now and $\$ 240036$-months from now. How much does she need to deposit today if the interest rate is $j_{12}=12 \%$ for the first 2 years and j_{12} $=6 \%$ thereafter?
A. $\$ 3182.25$
B. $\$ 3285.18$
C. $\$ 3510.38$
D. $\$ 3765.40$
$A=1800(1.01)^{-18}+2400(1.01)^{-24}(1.005)^{-12}=\$ 3285.18$
24. A promissory note for $\$ 10,000$, dated July 1,2007 , is due in four years with interest at $j_{2}=8 \%$.

On October 1, 2008, it was sold to an investor who discounted the note at $j_{4}=9 \%$. What was the purchase price of the note on October 1, $2008 ?$
A. $\$ 10,714.46$
B. $\$ 10,955.53$
C. $\$ 11,176.77$
D. $\$ 11,975.31$
$S=10,000(1.04)^{8}=13685.69$
Proceeds $=13,685.69(1.0225)^{-11}=\$ 10,714.46$
Note: Oct 1, 2008 to July 1, 2011 is 2 years, 9 months = 11 quarters
25. A company has a loan that is due on December 30, 2009. At that time they are required to pay $\$ 20,000$. What was the original amount of the loan if it was taken out on September 30, 2007 at $j_{4}=12 \%$?
A. $\$ 15,290.08$
B. $\$ 15,328.33$
C. \$15,498.49
D. $\$ 15,516.81$

Sept 30/07 to Dec 30/09 = 2 years, 3 months = 9 quarters
$A=20,000(1.03)^{-9}=\$ 15,328.33$
26. You take out a loan of $\$ 25,000$ from the ABC company. It is due in 5 years with interest at $j_{2}=$ 6%. After 18 months, ABC sells your loan to the XYZ company at a price that will earn XYZ a rate of return of $j_{4}=5 \%$. What price does XYZ pay?
A. $\$ 28,264.75$
B. $\$ 28,234.61$
C. $\$ 27,318.18$
D. $\$ 26,934.58$
$S=25,000(1.03)^{10}=\$ 33,597.91$
$P=33,597.91(1+0.05 / 4)^{--14}=\$ 28,234.61$
27. A long term promissory notes for $\$ 20000$ is signed on April 15, 2010. It is due on October 15, 2013 at $_{2}=6 \%$. The maturity value of the note is $\$ 24597.48$. The note is sold on April 15 , 2011 to a bank that discounts the note at $j_{4}=8 \%$. What are the proceeds?
A. $\$ 21,218.00$
B. $\$ 20,582.07$
C. $\$ 20,292.30$
D. $\$ 20,178.50$

Oct 15/13 to Apr 15, $2011=2.5$ years $\times 4=10$ quarters
Proceeds $=24597.48(1.02)^{-10}=\$ 20178.50$
28. An individual borrowed $\$ 10,000$ nine months ago and another $\$ 6,000$ three months ago and he wishes to pay off this loan with a payment of $\$ X$ today. You are given that $j_{2}=10 \%$ and that the practical method of crediting/charging interest is used. Determine $\$ X$.
A. \$16,918.90
B. $\$ 16,912.50$
C. \$16,907.46
D. $\$ 16,900.26$
$x=10,000(1.05)[1+(0.10) 3 / 12]+6,000[1+(0.10) 3 / 12]=\$ 16,912.50$
29. What is the accumulated value of $\$ 15,000$ over 6 years and 5 months if $j_{4}=10 \%$ and the exact method of accumulating is used? (Answer to the nearest dollar)
A. $\$ 27,411$
B. $\$ 27,981$
C. $\$ 28,039$
D. $\$ 28,271$
$S=15,000(1.025)^{25+2 / 3}=\$ 28,270.74$
30. You invest $\$ 50,000$ today in a fund earning $j_{4}=12 \%$. How much have you accumulated 65 months later using the practical method?
A. $\$ 81,038$
B. $\$ 93,945$
C. $\$ 94,866$
D. $\$ 94,875$
$S=50,000(1.03)^{21}[1+(0.12) 2 / 12]=\$ 94875.02$
31. What is the present value of $\$ 100,000$ due exactly 4 years and 8 months from today if $j 2=9 \%$ and the practical method of discounting is used?
A. $\$ 66,324.55$
B. $\$ 66,310.35$
C. $\$ 66,296.00$
D. $\$ 65,358.66$
$S=100,000(1.045)^{-10}[1+(0.09) 4 / 12]=\$ 66,324.55$
32. You invest $\$ 20,000$ today in a fund earning interest at $j_{1}=4 \%$. How much will you have in 5 years, 270 days if the exact method of accumulating is used?
A. $\$ 25,063.05$
B. $\$ 25,059.46$
C. $\$ 25,053.05$
D. $\$ 25,049.36$
$S=20,000(1.04)^{5+270 / 365}=\$ 25,049.36$
33. You invest $\$ 50,000$ today in a fund earning $j_{4}=12 \%$. How much have you accumulated 5 years and 5 months later using the exact method?
A. $\$ 93,935.73$
B. $\$ 93,944.88$
C. $\$ 94,865.84$
D. $\$ 94,875.02$
$S=50,000(1.03)^{21+2 / 3}=\$ 94,865.84$
34. The maturity value of a promissory note due on Sept. 14, 2010 is $\$ 6200$. What are the proceeds of the note using the practical (approximate) method on Jun. 2, 2007 if $j_{2}=10 \%$?
A. $\$ 4454.51$
B. $\$ 4498.36$
C. $\$ 4502.80$
D. $\$ 4760.25$

Sept 14, 2010 to Mar 14, $2007=3.5$ years $=7$ half years
Mar 14, 2007 to June 2, $2007=80$ days
Thus, $P=6200(1.05)^{-7}[(1+(0.10) 80 / 365]=\$ 4502.80$
35. What is the accumulated value of $\$ 5000$ at the end of 4 years, 11 months if $j_{4}=9 \%$ using the exact method?
A. $\$ 7588.52$
B. $\$ 7638.07$
C. $\$ 7708.09$
D. $\$ 7744.89$
$S=5000(1.0225)^{19+2 / 3}=\$ 7,744.89$
36. Using the exact method, what is the present value of $\$ 100,000$ due in 19 months if $j_{4}=12 \%$? (Answer to nearest dollar.)
A. $\$ 82,935$
B. $\$ 82,927$
C. $\$ 82,919$
D. $\$ 82,901$
$A=100,000(1.03)^{-(6+1 / 3)}=\$ 82,927.31$
37. What is the accumulated value of $\$ 5000$ for 20 months at $j_{2}=11 \%$ using the practical method?
A. $\$ 5978.85$
B. $\$ 5976.93$
C. $\$ 5957.00$
D. $\$ 5949.88$
$S=5000(1.055)^{3}[1+(0.11) 2 / 12]=\$ 5978.85$
38. Three payments of $\$ 10,000$ are made at the end of 3,9 and 15 months respectively. Calculate the total accumulated value of these payments at the end of two years using the exact method with $j_{6}=6 \%$.
A. $\$ 30,756.65$
B. $\$ 32,334.08$
C. $\$ 32,340.10$
D. $\$ 34,869.82$
$i=0.01$ every 2-months
$S=10,000\left[(1.01)^{10.5}+(1.01)^{7.5}+(1.01)^{4.5}\right]=\$ 32,334.08$
39. A loan of $\$ A$ is taken out today. You are given that this loan is to be paid off with a payment of $\$ 20,000$ in 3 years and 8 months. Determine A, if $j_{2}=10 \%$ and the practical method of crediting/charging interest is used.
A. $\$ 13,988.01$
B. $\$ 13,984.33$
C. $\$ 13,980.62$
D. $\$ 13,762.40$

3 yrs, 8 months $=7.33333$ years; We discount for 8 half years then accumulate 4 months; $A=$ $20,000(1.05)^{-8}[1+0.05(4 / 6)]=\$ 13,988.01$
40. Mrs. Singh owes Mr. Valdy $\$ 55,513.78$ in 14 -months. Mr. Valdy agrees to let her repay the loan with a payment of $\$ 35,000$ in 6 -months, $\$ 10,000$ in 8 -months and $\$ X$ in 14-months. If money is worth $j_{4}=6 \%$, what is the value of X, using 14 -months as the focal date along with the exact method of crediting/charging interest?
A. $\$ 8793.97$
B. $\$ 9204.40$
C. $\$ 9230.06$
D. $\$ 9794.03$
$55,513.78=35,000(1.015)^{2.66666}+10,000(1.015)^{2}+X$, solves for $X=\$ 8793.97$
41. A long term promissory note is due on April 5, 2013. The maturity value of the note on that date is $\$ 4720.56$. On June 7,2010 , the holder of the notes sells it to a bank who discounts the note at $j_{2}=14 \%$. Using the practical method of crediting/charging interest, calculate the proceeds of the sale.
A. $\$ 3217.60$
B. $\$ 3218.30$
C. $\$ 3219.24$
D. $\$ 3221.52$

Apr 5/13 to Apr 5/10 $=6$ half years, Apr 5/10 to Jun $7 / 10=63$ days
$P=4720.56(1.07)^{-6}[1+0.14(63 / 365)]=\$ 3221.52$
42. A promissory note with a maturity value of $\$ 20,000$ is sold to a bank 32 -months before maturity. The bank discounts the note using $j 2=16 \%$. What are the proceeds, if the practical method is used?
A. $\$ 13,275.57$
B. $\$ 13,258.11$
C. $\$ 13,266.92$
D. $\$ 12,939.48$

32 months $=5.33333$ half years, so we discount for 6 half years, then accumulate for 4 months. Thus, $\mathrm{S}=20,000(1.08)^{-6}[1+0.08(4 / 6)]=\$ 13,275.57$
43. A non-interest bearing long term promissory note is due on February 1, 2011. The loan amount was $\$ 30,000$. On October $15^{\text {th }}, 2010$ the note was sold to a bank that charges interest at $j_{12}=12 \%$. How much did the bank pay for this note? Assume the practical (or approximate) method is used for fractional time periods.
A. $\$ 28,962.10$
B. $\$ 28,952.61$
C. $\$ 28,829.41$
D. $\$ 28,675.35$

Feb $1 / 11$ to Oct $1 / 10=4$ months; Oct 1 to Oct $15=14$ days
$P=30,000(1.01)^{-4}[1+0.12(14 / 365)]=\$ 28,962.10$
44. A non-interest bearing long term promissory note is due on February 1, 2011. The loan amount was $\$ 30,000$. On October $15^{\text {th }}, 2010$ the note was sold to a bank that charges interest at $j_{12}=12 \%$. How much did the bank pay for this note? Assume the exact method is used for fractional time periods.
A. $\$ 28,959.25$
B. $\$ 28,973.20$
C. $\$ 28,977.85$
D. $\$ 29,104.21$

Feb $1 / 11$ to Nov 1/10 = 3 months; Oct 15 to Nov 1 = 17 days; Oct 1 to Nov $1=31$ days $P=30,000(1.01)-[3+(17 / 31)]=\$ 28,959.25$
45. Using the practical method, what is the accumulated value of $\$ 20,000$ over 7 years and 10 months if the investment earns interest at $j_{2}=10 \%$?
A. $\$ 42,898.52$
B. $\$ 42,953.22$
C. $\$ 42,964.52$
D. $\$ 44,350.47$
$S=20,000(1.05)^{15}[1+0.05(4 / 6)]=\$ 42,964.52$
46. A loan of $\$ A$ is taken out today. The loan is to be paid off with a payment of $\$ 20,000$ in 44 months. If the interest rate on the loan is $\mathrm{j}_{2}=10 \%$ and the practical method of crediting/charging interest is used, what is the value of A ?
A. $\$ 13,988.01$
B. $\$ 13,762.40$
C. $\$ 13,984.33$
D. $\$ 13,980.62$

44 months $=71 / 3$ half years $=8$; need to discount past time 0 by $2 / 3$ rds of a half year $=4$ months; Thus, $A=20000(1.05)^{-8}[1+(0.10) 4 / 12]=\$ 13,988.01$
47. An individual borrowed $\$ 10000$ nine months ago and another $\$ 6000$ three months ago and he wishes to pay off this loan with a payment of $\$ X$ today. You are given that $j_{2}=10 \%$ and that the practical method of crediting/charging interest is used. Determine $\$ X$.
A. $\$ 16918.90$
B. $\$ 16912.50$
C. $\$ 16907.46$
D. $\$ 16900.26$
$x=10000(1.05)[1+(0.10)(3 / 12)]+6000[1+(0.10) 3 / 12]=\$ 16912.50$
48. Mrs. Singh owes Mr. Valdy $\$ 55513.78$ in 14-months. Mr. Valdy agrees to let her repay the Ioan with a payment of $\$ 35000$ in 6 -months, $\$ 10000$ in 10 -months and $\$ X$ in 14 -months. If money is worth $\mathrm{j}_{4}=6 \%$, what is the value of X, using 14 -months as the focal date along with the exact method of crediting/charging interest?
A. $\$ 8894.58$
B. $\$ 8895.72$
C. $\$ 8896.37$
D. $\$ 8897.69$
$55513.78=35000(1.015)\left({ }^{2+2 / 3}\right)+10000(1.015)\left({ }^{1+1 / 3}\right)+X$, which solves as $X=\$ 8895.72$
49. A lump sum of $\$ 25,000$ is due in 4 -years and 5 months. What is the present value of this amount using the practical method if the interest rate is $\mathrm{j}_{2}=8 \%$?
A. $\$ 17,681.77$
B. $\$ 17,679.86$
C. $\$ 17,677.99$
D. $\$ 17,685.52$
$n=4$ yrs, 5 months $=85 / 6$ half years; so discount for 9 half years then accumulate for 1 month:

$$
A=25000(1.04)^{-9}[1+(0.08)(1 / 12)]=\$ 17681.77
$$

50. What is the present value of $\$ 100,000$ due in 5 -years and 10 -months using the practical method if the interest rate is $j_{4}=12 \%$?
A. $\$ 49,685.31$
B. $\$ 50,167.50$
C. $\$ 50,172.39$
D. $\$ 50,177.24$

5 years, 10 months = $231 / 3$ quarter years; thus, discount 24 quarters, then accumulate for 2 months
$A=100000(1.03)^{-24}[1+(0.12)(2 / 12)]=\$ 50177.24$
51. You deposit $\$ 1000$ today in an account that pays interest at $j_{2}=8 \%$ for the next 5 years and j_{2} $=6 \%$ thereafter. How many complete interest periods will it take for you to accumulate at least double your original investment?
A. 11 periods
B. 18 periods
C. 21 periods
D. 24 periods
$2000=1,000(1.04)^{10}(1.03)^{n}$
$(1.03)^{n}=1.351128338$ which solves for $n=10.18$
Thus, need a total of $10+10.18=20.18=21$ periods
52. You invest $\$ 2130.22$ today. Four and a half years later, you see that this investment has grown to $\$ 3316.08$. What nominal rate of interest, j_{12}, have you been earning?
A. 9.25%
B. 9.88%
C. 10.08%
D. 10.33%
$3316.08=2130.22(1+\lambda)^{4.5 \times 12}$
$(1+i)^{54}=1.556684286$ which solves for $i=0.008229196$
OR $j_{12}=9.875=9.88 \%$
53. A $\$ 2000$ loan is to be repaid with payments of $\$ 1200$ in 1 year, $\$ 800$ in 4 years, and $\$ 400$ in n years, assuming a nominal interest rate of 6% compounded annually. Determine n.
A. 4.59
B. 6.37
C. 9.18
D. 14.74
$2000=1200(1.06)^{-1}+800(1.06)^{-4}+400(1.06)^{-n}$
$(1.06)^{-n}=0.585623994$ which solves for $n=9.18$ years
54. $\$ 15,000$ is invested into an account that earns interest at $j_{4}=x \%$. There are no other deposits made into the account. At the end of 15 years, the accumulated value of the account is $\$ 45,000$. Determine x.
A. 1.85%
B. 2.00%
C. 7.39%
D. 8.00%
$45,000=15,000(1+x 4)^{60}$ Solves for $x=7.39 \%$
55. A deposit of $\$ 100$ is made into an account earning $j_{12}=18 \%$. Another $\$ 100$ is deposited into a $2^{\text {nd }}$ account earning $j_{2}=10 \%$. At what time, n (where n is in years), would the accumulated value of the first account be twice as much as the accumulated value in the $2^{\text {nd }}$ account? (Answer in years)
A. 8.5
B. 9.3
C. 9.9
D. 10.2
$100(1.015)^{12 n}=200(1.05)^{2 n}$
$\left[(1.015)^{12} /(1.05)^{2}\right]^{n}=2$ which solves for $n=8.5486=8.5$ years
56. How long does it take for a loan of $\$ 5000$ to accumulate $\$ 1000$ of interest if $j_{2}=10 \%$?
A. 1 year, 10 months, 13 days
B. 1 year, 10 months, 29 days
C. 3 years, 8 months, 26 days
D. 3 years, 9 months, 28 days
$6000=5000(1.05)^{n}$
$n=3.736850652 \div 2=1.868425$ years $=1$ year, 10 months, 13 days
57. An investment doubles in $91 / 2$ years. What nominal rate of interest j_{4} is being earned?
A. 7.32%
B. 7.36%
C. 7.43%
D. 7.57%
$(1+j 44)^{38}=2$ Solves for $j_{4}=7.36 \%$
58. You invest $\$ 1000$ today at $j_{12}=6 \%$. After 2 years, the interest rate changes to $j_{12}=12 \%$. How many years from today will it take the $\$ 1000$ to grow to $\$ 10,000$?
A. 21.28 years
B. 20.28 years
C. 19.28 years
D. 18.28 years
$10,000=1000(1.005)^{24}(1.01)^{n}$ Solves for $n=219.378$ months $=18.28$ years
Thus total $=2+18.28=20.28$ years
59. How long will it take for $\$ 750$ to accumulate to $\$ 1000$ if $\dot{j}=9 \%$?
A. 6 years, 175 days
B. 6 years, 196 days
C. 3 years, 88 days
D. 3 years, 98 days
$1000=750(1.045)^{n}$ Solves for $n=6.535720775$ half years
OR $n=3.267860387$ years $=3$ years, 98 days
60. You wish to have $\$ 4000$ in 3 -years time. If you invest $\$ 3000$ today, what nominal rate $\dot{j} 4$ must you earn on your investment to reach your goal?
A. 9.62%
B. 9.71%
C. 10.06%
D. 11.11%
$4000=3000\left(1+j_{4} / 4\right)^{12}$ Solves for $j_{4}=9.71 \%$
61. If money triples in 6 years, what rate of interest, j_{2}, is being earned?
A. 9.6\%
B. 10.0%
C. 19.2%
D. 20.1%
$3=1(1+j 2 / 2)^{12}$ Solves for $j_{2}=19.174 \%$
62. $\$ 4000$ is deposited into an account earning $j_{2}=8 \%$ for the first 2 years and $j_{2}=10 \%$ thereafter. How long will it take for it to grow to $\$ 9041.67$?
A. 6 yrs, 9 months
B. $8 \mathrm{yrs}, 9$ months
C. $13 \mathrm{yrs}, 6$ months
D. $17 \mathrm{yrs}, 6$ months
$9041.67=4000(1.04)^{4}(1.05)^{n}$, which solves for $n=13.5$ half years $=6.75$ years
Total $=8.75$ years $=8$ years, 9 months
63. If money triples in value in 8 years, what nominal rate of interest compounded semi-annually is being earned?
A. 7.11%
B. 7.36%
C. 14.22%
D. 14.72%
$3=(1+i)^{16}$, which solves for $j 2=2 i=14.22 \%$
64. $\$ 25,000$ was deposited into an investment account earning interest at a nominal rate of $j_{2}=$ $x \%$ for 10 years. You are given that the corresponding total amount of interest earned in the first four years is $\$ 9,012.22$. Determine x.
A. 6.25%
B. 6.55%
C. 7.85%
D. 8.00%
$25,000+9,012.22=25,000(1+x / 2)^{8}$ which solves $\times=7.85 \%$
65. A car insurance company charges you a premium of $\$ 1452$ a year for your car insurance policy. You have two options. Option 1 is to pay the $\$ 1452$ in cash today. Option 2 is to make three payments of $\$ 499$ at the following times: today, 3-months from now and 6-months from now. What nominal rate of interest, $j 4$, are you being charged?
A. 11.73%
B. 12.12%
C. 12.53%
D. 13.06%
$1452=499+499(1+\lambda)^{-1}+499(1+\lambda)^{-2}$; Plugging the 4 given values into this equation, you get that at $i=0.1253 / 4$, the right hand side $=\$ 1451.99=\$ 1452$. (could also solve using the quadratic formula)
66. Which of the following rates would lead to the shortest length of time (n, in years) needed to double an initial investment of $\$ 1000$?
A. $j_{1}=9.15 \%$
B. $\dot{1}_{2}=8.90 \%$
C. $\dot{\mu}_{4}=8.84 \%$
D. $j_{12}=8.77 \%$
A. $2=(1.0915)^{n}$ solves for $n=\underline{7.917}$ years; B. $2=(1.0455)^{2 n}$ solves for $n=7.96$ years
C. $2=(1.0221)^{4 n}$ solves for $n=7.927$ years; D. $2=(1.00730833)^{12 n}$ solves for $n=7.9325 \mathrm{yr}$
67. If money doubles at a certain rate of interest compounded monthly in 6 years, how long will it take for the same amount of money to triple in value?
A. 10.40 years
B. 9.51 years
C. 8.35 years
D. Cannot be determined
$2=(1+i)^{72}$, which solves for $i=0.009673533$
$3=(1.009673533)^{12 n}$ which solves for $n=9.51$ years
68. What is the nominal rate of interest convertible quarterly at which the discounted value (present value) of $\$ 15,000$ due at the end of 186 months is $\$ 5000$?
A. 9.56%
B. 7.39%
C. 7.27%
D. 7.15%

186 months $=15.5$ years $=62$ quarters
$5000=15,000(1+i)^{-62}$ solves for $j_{4}=4 i=7.15 \%$
69. You are given that at a certain rate j_{1}, money will double itself in 12-years. At this same rate j_{1}, how many years will it take for $\$ 1500$ to accumulate $\$ 700$ of interest?
A. 8.2 years
B. 6.6 years
C. 5.6 years
D. 4.2 years
$2=\left(1+j_{1}\right)^{12}$, solves for $j_{1}=0.059463094$
$2200=1500(1.059463094)^{n}$ solves for $n=6.6$ years
70. You deposit $\$ 1000$ today in an account that pays interest at $\mathrm{j}_{2}=8 \%$ for the next 5 -years and j_{2} $=6 \%$ thereafter. How long in total (in years and days) will it take for you to at least double your original investment?
A. 10 years, 34 days
B. 10 years, 67 days
C. 10 years, 79 days
D. 10 years, 158 days
$2000=1000(1.04)^{10}(1.03)^{n} \rightarrow 2000=1480.244285(1.03)^{n}$
$\rightarrow(1.03)^{n}=1.351128338 \rightarrow n=10.18196372$ half years $=5.090531859$ years
Total $=5$ yrs $+5 y r s+(0.090531859)(365)=10$ years, 34 days
71. A car insurance company charges you a premium of $\$ 1452$ a year for your car insurance policy. You have two options. Option 1 is to pay the $\$ 1452$ in cash today. Option 2 is to make two payments of $\$ 749$ at the following times: today and 6-months from today. What nominal rate of interest, j_{4}, are you being charged?
A. 11.73%
B. 13.06%
C. 12.88%
D. 12.12%
$1452=749+749(1+i)^{-2} \rightarrow(1+i)^{-2}=703 / 749 \rightarrow(1+i)^{2}=1.065433855$
$i=0.032198554 \rightarrow j 4=12.88 \%$
72. Paul deposited $\$ 1000$ in a savings account paying interest at $\mathrm{j}_{1}=4.5 \%$. The account has now grown to $\$ 1246.18$. If he had been able to invest the same amount over twice as long in a fund paying interest at $\mathrm{j}_{1}=5.5 \%$, to what amount would his investment now have accumulated?
A. $\$ 1498.43$
B. $\$ 1882.35$
C. $\$ 1653.64$
D. $\$ 1708.14$

First, solve for $n: 1000(1.045)^{n}=1246.18 \rightarrow n=5$ years
Then solve for $S=1000(1.055)^{10}=\$ 1708.14$
73. You borrows $\$ 10,000$ today at $\mathrm{j}_{2}=8 \%$. You pay back $\$ 7000$ at the end of 2 -years and another $\$ 7000$ at the end of n-years (from today). What is the value of n ? (years, days)
A. $7 \mathrm{yrs}, 30$ days
B. $7 \mathrm{yrs}, 60$ days
C. $14 \mathrm{yrs}, 30$ days
D. $14 \mathrm{yrs}, 60$ days
$10000=7000(1.04)^{-4}+7000(1.04)^{-2 n}$, which solves for $2 n=14.164$, which is 7 years, 30 days
74. Mr. Harry Leggs borrows $\$ 5000$ today, due with interest at $j_{4}=8 \%$ in one lump sum at the end of 2 years. Instead, Mr. Leggs wishes to pay $\$ 2000$ six months from today and $\$ X$ in 18 months. If money is worth $j_{12}=6 \%$, what is X ?
A. $\$ 3252.09$
B. $\$ 3346.29$
C. $\$ 3465.95$
D. $\$ 3562.23$

Original debt $=5000(1.02)^{8}=\$ 5858.30$
Using 18 months as the focal date:
$2000(1.005)^{12}+X=5858.30(1.005)^{-6}$ Solves for $X=\$ 3562.23$
75. A loan of $\$ 5000$ is taken out today. It is due with interest at $j_{4}=8 \%$ in 2 years. Instead, the borrower negotiates with the lender to pay $\$ 2500$ in 1 year and $\$ X$ in 3 years. If the lender can reinvest any payment at $j_{2}=5 \%$, what is the value of X ?
A. $\$ 2493.59$
B. $\$ 3038.93$
C. $\$ 3395.34$
D. $\$ 3581.68$

Original debt $=5000(1.02)^{8}=\$ 5858.30$
Using 3 years as the focal date:
$2500(1.025)^{4}+X=5858.30(1.025)^{2}$ Solves for $X=\$ 3395.34$
76. A woman borrowed money and owes $\$ 3000$ one-year from now and $\$ 3000$ three-years from now. The loan is renegotiated so that the woman can instead pay $\$ X$ two-years from now and $\$ 4000$ four-years from now which will fully pay back the loan. If the interest rate on the loan is $j_{2}=8 \%$, what is the value of X ?
A. $\$ 2599.25$
B. $\$ 2588.42$
C. $\$ 2580.78$
D. $\$ 2306.39$

Focal date 2 years: $X+4000(1.04)^{-4}=3000(1.04)^{2}+3000(1.04)^{-2}$
Solves for $X=\$ 2599.25$
77. A debt of $\$ 5700$ is due, with interest at $j_{2}=8 \%$, in three years. It is agreed instead that the Ioan will be repaid with a payment of $\$ X$ in one year and $\$ 3000$ in two years. If money is worth $\dot{\mu}=4 \%$, what is the value of X ?
A. $\$ 3282.18$
B. $\$ 3348.50$
C. $\$ 3391.45$
D. $\$ 3777.51$

Original debt $=5700(1.04)^{6}=\$ 7212.32$
Focal date 1 year. $X+3000(1.01)^{-4}=7212.32(1.01)^{-8}$
Solves for $X=\$ 3777.51$
78. Payments of $\$ 1000$ due in 6 months, $\$ 1500$ due in 9 months, and $\$ 1200$ due in 15 months are to be exchanged for a single payment $\$ X$ due in 12 months. What is X if $j_{4}=6 \%$?
A. $\$ 3770.73$
B. $\$ 3734.99$
C. $\$ 3809.54$
D. $\$ 3927.05$

At time 12 months: $X=1000(1.015)^{2}+1500(1.015)+1200(1.015)^{-1}=\$ 3734.99$
79. You borrow $\$ 2000$ today. The loan is due in 3 years, with interest at $j_{1}=9 \%$. It is agreed that you will instead pay $\$ 1000$ one year from now and $\$ X$ two years from now. If money is worth j_{2} $=6 \%$, what is the value of X ?
A. $\$ 1190.12$
B. $\$ 1286.20$
C. $\$ 1380.48$
D. $\$ 1529.16$

Original debt $=2000(1.09)^{3}=\$ 2590.06$
Focal date 2 years: $1000(1.03)^{2}+X=2590.06(1.03)^{-2}$
Solves for $X=\$ 1380.48$
80. A debt of $\$ 7000$ is due with interest at $j_{2}=8 \%$ at the end of 3 years. To repay this debt, a payment of $\$ 1500$ is made at the end of 1 year, followed by a payment of $\$ X$ at the end of 2 years. If money is worth $j_{4}=10 \%$, what is the value of X so that the loan is fully paid off?
A. $\$ 4685.94$
B. $\$ 4713.64$
C. $\$ 5172.40$
D. $\$ 6873.10$

Focal date 2 years: $1500(1.025)^{4}+X=7000(1.025)^{-4}$
Solves for $X=\$ 4685.94$
81. A student borrows $\$ 2,000$ today and they agree to pay off the loan with one payment of $\$ 2,590.06$ to be made at the end of 3 years time. It is then agreed that, instead of paying off the loan with one payment, the student can pay off the loan with a payment of $\$ 1000$ one year from now and $\$ X$ two years from now. Given that $j_{2}=6 \%$, determine $\$ X$.
A. $\$ 1190.12$
B. $\$ 1286.20$
C. $\$ 1380.48$
D. $\$ 1529.16$

Focal date $=$ end of 2 years;
$1000(1.03)^{2}+X=2590.06(1.03)^{-2}$, which solves for $X=\$ 1380.48$
82. You borrow $\$ 2000$ today. This loan is due in 3 -years with interest at $j_{1}=9 \%$. It is agreed that you will instead pay $\$ 1000$ one-year from now and $\$ X$ two-years from now. If money is worth j_{2} $=6 \%$, what is the value of X ?
A. $\$ 1190.12$
B. $\$ 1286.20$
C. $\$ 1380.48$
D. $\$ 1529.16$

Same Solution as \#87, except the maturity value of the loan must be calculated first: $S=$ $2000(1.09)^{3}=\$ 2590.06$
83. You owe your parents $\$ 2500$ today. You agree to pay this back by making a payment of $\$ 500$ now, $\$ 600$ six months from now and $\$ X 18$-months from now. What is X if $j_{4}=6 \%$?
A. $\$ 1417.60$
B. $\$ 1473.22$
C. $\$ 1482.36$
D. $\$ 1550.07$

Focal date = today;
$2500=500+600(1.015)^{-2}+X(1.015)^{-6}$, which solves for $X=\$ 1550.07$
84. You borrow $\$ 5000$ today. The loan is due in 5 years, with interest at $j_{1}=7 \%$. It is agreed that you can instead pay $\$ 1000$ one year from now, $\$ X$ two years from now and $\$ 2000$ three years from now. If money is worth $j_{4}=8 \%$, what is the value of X ?
A. $\$ 2599.39$
B. $\$ 2648.80$
C. $\$ 2788.70$
D. $\$ 2794.38$

Maturity value of loan $=5000(1.07)^{5}=\$ 7012.76$; Focal date $=$ end of 5 years
$7012.76=1000(1.02)^{16}+X(1.02)^{12}+2000(1.02)^{8}$, solves for $X=\$ 2599.39$
85. A $\$ 1000$ loan is taken out today. The loan is repaid with a payment of $\$ 400$ at the end of the $1^{\text {st }}$ year, $\$ 800$ at the end of the $5^{\text {th }}$ year, and a payment of $\$ X$ at the end of the $10^{\text {th }}$ year. If $j_{4}=$ 12%, what is X ?
A. $\$ 220.97$
B. $\$ 657.84$
C. $\$ 737.26$
D. $\$ 1406.54$

Focal date $=$ end of 10 years
$X=1000(1.03)^{40}-400(1.03)^{36}-800(1.03)^{20}=\$ 657.84$
86. You borrow $\$ 2500$ today. The loan is due in 5 -years, with interest at $j_{2}=8 \%$. It is agreed that you can instead pay $\$ X$ two years from now and $\$ 1500$ three years from now. If money is worth $j_{12}=6 \%$, what is the value of X ?
A. $\$ 1679.54$
B. $\$ 1537.81$
C. $\$ 1405.04$
D. $\$ 675.25$

Maturity value of loan $=2500(1.04)^{10}=\$ 3700.61$; Focal date $=$ end of 5 years $3700.61=X(1.005)^{36}+150(1.005)^{24}$, solves for $X=\$ 1679.54$
87. A woman plans to withdraw $\$ 1800$ 18-months from now, and $\$ 2400$ 36-months from now. How much does she need to deposit today if the interest rate is $j_{12}=12 \%$ for the first 2 years and $\mathrm{j}_{12}=6 \%$ thereafter?
A. $\$ 3182.25$
B. $\$ 3765.40$
C. $\$ 3510.38$
D. $\$ 3285.18$
$A=1800(1.01)^{-18}+2400(1.005)^{-12}(1.01)^{-24}=\$ 3285.18$
88. A loan of $\$ 5000$ is taken out today. It is due with interest at $j_{4}=8 \%$ in 2 years. Instead, the borrower negotiates with the lender to replace this loan with a payment of $\$ 2500$ in 1-year and another payment of $\$ X$ in 3-years. If the lender can reinvest any payment at $\mathrm{j}_{2}=5 \%$, what is the value of X ?
A. $\$ 3038.93$
B. $\$ 2493.59$
C. $\$ 3581.68$
D. $\$ 3395.34$

Maturity value $=5000(1.02)^{8}=5858.30$
Equation of value at time 6 (end of 3 years):
$X+2500(1.025)^{4}=5858.30(1.025)^{2}$; Solves for $X=\$ 3395.34$
89. A woman who died left an estate worth $\$ 200000$ to be split among her two children, currently age 8 and 12. Each child is to receive an equal amount, X, from the estate when they reach age 18. If the money can be invested at $\mathrm{j}_{2}=6 \%$, how much does each child receive when they turn 18? (Answer to nearest dollar)
A. $\$ 142,576$
B. $\$ 159,355$
C. $\$ 179,356$
D. $\$ 180,611$

The 12-year old gets X in 6 years (12 periods), while the 8 -year old gets X in 10 years (20 periods). Thus,
$200000=X(1.03)^{-12}+X(1.03)^{-20}$, which solves for $X=\$ 159355$
90. An investment has the following interest rates: $j_{2}=6 \%$ for the first 30 months, followed by $j_{4}=$ 8% for the next 36 months, followed by $j_{6}=9 \%$ for the last 18 months. What is the equivalent j_{2} earned over the 7 year period?
A. 6.24%
B. 6.68%
C. 7.56%
D. 7.70%
$(1+j z 2)^{14}=(1.03)^{5}(1.02)^{12}(1.015)^{9}$ Solves for $j_{2}=7.56 \%$
91. A fund pays interest at $j_{1}=5 \%$ for the first 3 years, $j_{4}=10 \%$ for one year, and $j_{12}=12 \%$ for one year. What is the equivalent nominal interest rate, j_{2}, earned over the 5 years?
A. 7.56%
B. 7.43%
C. 7.40%
D. 7.23%
$(1+j / 2)^{10}=(1.05)^{3}(1.025)^{4}(1.01)^{12}$ Solves for $j_{2}=7.43 \%$
92. You are investing a sum of money for 4 years. You earn a simple interest rate of $r=10 \%$ for the first 2 years and $j_{12}=6 \%$ for the last 2 years. What is the equivalent effective annual rate of return, j, you earn over each of the 4 years?
A. 8.81%
B. $8.07 \% \%$
C. 7.98%
D. 7.84%
$(1+j)^{4}=[1+(0.10) 2](1.005)^{24}$ Solves for $j=7.84 \%$
93. You invest a sum of money at $j_{12}=15 \%$ for 3 years, followed by $j_{4}=12 \%$ for 4 years. What equivalent rate of return, j_{1}, do you earn over each of the 7 years?
A. 13.29%
B. 13.50%
C. 13.79%
D. 14.05%
$(1+j)^{7}=(1.0125)^{36}(1.03)^{16}$ Solves for $j=14.05 \%$
94. You invest $\$ 1000$ in a fund earning $j_{1}=6 \%$ in the first year, $j_{2}=x \%$ in the $2^{\text {nd }}$ year, and $j_{4}=8 \%$ in the $3^{\text {rd }}$ year. If the accumulated value is $\$ 1264.98$ after three years, what is the value of x ?
A. 10.00%
B. 10.25%
C. 10.50%
D. 10.75%
$1264.98=1,000(1.06)+(1+X / 2)^{2}(1.02)^{4}$
Solves for $X=10.00 \%$
95. $\$ P$ is deposited today in a fund which earns $j_{12}=6 \%$ for the $1^{\text {st }}$ year, $j_{4}=6 \%$ for the $2^{\text {nd }}$ year and $j_{2}=6 \%$ thereafter. At the end of 4 years, there is $\$ 12,000$ in the fund. What is P ?
A. $\$ 9461.84$
B. $\$ 9505.12$
C. $\$ 9747.82$
D. $\$ 10,038.06$
$12,000=P(1.005)^{12}(1.015)^{4}(1.03)^{4}$
Solves for $P=\$ 9461.84$
96. Jim Dandy invests a sum of money today. He earns the following interest rates over the next 5-years:
${ }_{2}=10 \%$ for the first 2-years
$j_{4}=8 \%$ for the next 2-years
$\dot{\mu}_{12}=6 \%$ for the last year

What annual effective rate of return, $j 1$, did Jim earn over the 5-year period?
A. Less than 8\%
B. 8\% or more, but less than 8.5\%
C. 8.5% or more, but less than 9%
D. more than 9%
$(1+j)^{5}=(1.05)^{4}(1.02)^{8}(1.005)^{12}$
Solves for $j=8.62 \%$
97. The 1996 Canada Savings Bond issue offered the following annual rates, guaranteed over 10 years: 3% in the first year, followed by $4 \%, 5 \%, 6 \%, 6.50 \%, 6.75 \%, 7 \%, 7,25 \%, 8 \%$ and 8.75% in the $10^{\text {th }}$ year. If you buy one of these bonds today and cash it in after 5 years, what annual rate of return do you earn?
A. 4.89%
B. 5.39%
C. 6.21%
D. 6.50%
$(1+J)^{5}=(1.03)(1.04)(1.05)(1.06)(1.065)$
98. A single deposit of $\$ 25,000$ is made into an account that earns interest at $j_{4}=7 \%$ for one year, $j_{2}=6 \%$ for the next year and $j_{6}=3 \%$ thereafter. How much interest is earned in the fourth year?
A. $\$ 143.93$
B. $\$ 863.58$
C. $\$ 889.82$
D. $\$ 916.85$
accumulated value after 3 years $=25,000(1.0175)^{4}(1.03)^{2}(1.005)^{6}=29,291.96$
accumulated value after 4 years $=29,291.96(1.005)^{6}=\$ 30,181.78$
$/=30,181.78-29,291.96=\$ 889.82$
99. An investment has the following interest rates: $j_{4}=8 \%$ for the first 2 years, followed by $j_{2}=8 \%$ for the next 4 years,, followed by $j_{12}=6 \%$ for the last 28 months. What is the equivalent nominal rate of interest, compounded 3 times a year, j, earned over this time period?
A. 5.56%
B. 7.43%
C. 9.99%
D. 11.31%
$(1.02)^{8}(1.04)^{8}(1.005)^{28}=(1+\dot{j} / 3)^{25}$, which solves for $j_{3}=7.43 \%$
100. You invest $\$ 1000$ for 3 years in a fund earning $j_{1}=6 \%$ in the first year, $j_{2}=x \%$ in the second year, and $j_{4}=8 \%$ in the third year. If the accumulated value is $\$ 1264.98$ after three years, what is the value of x ?
A. 10.00%
B. 10.25%
C. 10.50%
D. 10.75%
$1000(1.06)(1+x / 2)^{2}(1.02)^{4}=\$ 1264.98$ which solves for $x=10.00 \%$
101. What is the effective annual rate, j, over 7 years that is equivalent to $j_{6}=6 \%$ for the first two years, $j_{12}=9 \%$ for the next three years, and $j_{2}=4 \%$ for the last two years?
A. 6.00%
B. 6.31%
C. 6.69%
D. 6.91%
$(1+j) 7=(1.01)^{12}(1.0075)^{36}(1.02)^{4}$, which solves for $j=6.91 \%$
102. What is the equivalent effective annual rate, j, over 8 -years that is equivalent to $j=8 \%$ for the first three years, $j_{12}=6 \%$ for the next three years, and $j_{2}=5 \%$ for the last two years?
A. 6.02\%
B. 6.13%
C. 6.50%
D. 6.67%
$(1+j)^{8}=(1.013333)^{18}(1.005)^{36}(1.025)^{4}$, which solves for $j=6.67 \%$
103. You invest some money and earn the following rates of interest: simple interest of 15% for 9 months, followed by $j_{6}=12 \%$ for 18 months, followed by $j_{4}=5 \%$ for 9 months. What is the equivalent rate of interest, j_{2} earned over the 36 months?
A. 10.97%
B. 11.03%
C. 11.06%
D. 11.23%
$\left(1+j_{2} / 2\right)^{6}=[1+0.15(9 / 12)](1.02)^{9}(1.0125)^{3}$, which solves for $j_{2}=11.03 \%$
104. An investment has the following interest rates: $\mathrm{j}_{4}=8 \%$ for the first 2-years, followed by $\mathrm{j}_{2}=8 \%$ for the next 4-years, followed by $j_{12}=6 \%$ for the last 28 -months. What is the equivalent nominal rate of interest, compounded 3 times a year, j_{3}, earned over this time period of 100 months?
A. 9.99%
B. 7.43%
C. 5.56%
D. 11.31%
$\left(1+j_{3} / 3\right)^{25}=(1.02)^{8}(1.04)^{8}(1.005)^{28} \rightarrow j_{3} / 3=0.02477545 \rightarrow j_{3}=7.43 \%$
where: 100 months divided by $4=25$ three-month periods
105. Jackie invested $\$ 500$ in an investment fund that pays interest at $\mathrm{j}_{2}=5.3 \%$ for the first two years, $\mathrm{j}_{12}=7 \%$ for the next three years, and $\mathrm{j}_{365}=4.5 \%$ for the last year. What effective interest rate, j, did she earn over the 6 years?
A. 6.17%
B. 7.23%
C. 6.78%
D. 6.01%
$(1+j)^{6}=(1+0.053 / 2)^{4}(1+0.07 / 12)^{36}(1+0.045 / 365)^{365}$, which solves for $j=6.17 \%$
106. An investment earns the following interest rates: 10% simple interest for 24 months, followed by 8% compounded quarterly for 36 months. What is the equivalent nominal rate compounded semi-annually that is earned over the 5 -years?
A. 7.34%
B. 7.49%
C. 8.58%
D. 8.76%
$\left(1+j_{2} / 2\right)^{10}=[1+(0.10)(24 / 12)](1.02)^{12}$, which solves for $j_{2}=8.58 \%$
107. Suppose the inflation rate in a country is 1% per month. How many years will it take for the purchasing power of $\$ 1$ today to be cut in half?
A. 11.62
B. 9.20
C. 6.12
D. 5.81
$1=0.5(1.01)^{n}$, solves for $n=69.6607$ months $=5.81$ years
108. If inflation is 3.4% per year, what does the purchasing power of $\$ 1$ today become in 10 years?
A. $\$ 0.716$
B. $\$ 0.746$
C. $\$ 1.340$
D. $\$ 1.397$
$(1.034)^{-10}=\$ 0.7158=\$ 0.716$
109. If there will be 3 times as many fruit flies in a vegetable garden in 10 days as there are today, what rate of growth, compounded twice a day, does this represent?
A. 11.29%
B. 11.61%
C. 12.29%
D. 23.22%
$(1+j / 2)^{20}=3$, solves for $\dot{j}=11.29 \%$
110. A person invests $\$ 2000$ today in a fund earning interest at $j_{1}=6 \%$. If the rate of inflation is 2.1% in the first year and 3.0% in the second year, how much is the investment worth, in real terms (after taking account of inflation), at the end of two years?
A. $\$ 2131.30$
B. $\$ 2136.87$
C. $\$ 2138.15$
D. $\$ 2140.34$
$S_{\text {real }} 2000(1.06)^{2 /(1.021)(1.03)}=\$ 2136.87$
111. Suppose the inflation rate is 0.8% per half year and you can invest money at $j_{2}=6 \%$. If you invested \$100,000 at the start of the year, how much will you have accumulated, in "real" terms (after taking into account inflation), at the end of the year?
A. $\$ 104,324.14$
B. $\$ 104,330.71$
C. $\$ 104,412.71$
D. $\$ 104,448.40$
$S_{\text {real }}=100,000(1.03)^{2} /(1.008)^{2}=\$ 104,412.71$
112. In 1977, the annual inflation rate in Canada was 9.5%, while one-year interest rates were 7.9%. If you invest $\$ 1000$ at the start of the year, how much money, in real terms, did you have at the end of the year, after adjusting for inflation?
A. $\$ 984.00$
B. $\$ 985.39$
C. $\$ 1014.61$
D. $\$ 1016.00$
$S_{\text {real }}=1000(1.079) / 1.095=\$ 985.39$
113. In 1977, the annual inflation rate in Canada was 9.5%, while one-year interest rates were 7.9%. What was the real rate of return in Canada in 1977?
A. -1.60%
B. -1.46%
C. 1.46%
D. 1.60%
$i_{\text {real }}=(0.079-0.095) / 1.095=-1.46 \%$
114. Jack earns a one-year real rate of return of 2.45% on an investment. If inflation is 2.00% for the year, what nominal rate of return j_{1} did Jack earn for the one-year period?
A. 4.35%
B. 4.40%
C. 4.45%
D. 4.50%
$0.0245=(i-0.02) / 1.02$ which solves for $i=4.50 \%$
115. In a particular year, the interest rate is 5% and the real rate of return is 3%. What is the rate of inflation for the same year?
A. 2.06%
B. 2.00%
C. 1.94%
D. 1.85%
$0.03=(0.05-r) /(1+r)$ which solves for $r=1.94 \%$
116. The population of a given country was 24.3 million on January 1, 2001 and on January 1, 2011 it was 27.3 million people and the population growth rate over this time period was $g \%$ compounded annually. At this same rate of growth g, how many more years (from January 1 , 2011) will it take this country's population to reach 30 million people?
A. 8.1 years
B. 9.5 years
C. 9.2 years
D. 18.1 years
$27.3=24.3(1+g)^{10}$, which solves for $g=0.011709056$
117. During the spring growing season, a sunflower plant will increase its size by 60% every 7 days. If a plant is currently 5 cm tall, how tall will/should it be in 25 days?
A. 26.8 cm
B. 31.0 cm
C. 39.1 cm
D. 42.1 cm
$S=5(1.60)^{(25 / 7)}=26.8 \mathrm{~cm}$
118. Jack invested $\$ 1200$ into an account for 5 -years. The account paid interest at $j_{1}=4 \%$ for the first 2 -years and $j_{1}=6 \%$ thereafter. If the annual inflation rate is 2% for each of these 5 -years, what is the annual rea/rate of interest earned over the 5-years?
A. 3.92\%
B. 3.13%
C. 2.94%
D. 1.96%
$\left(1+i_{\text {real }}\right)^{5}=(1.04)^{2}(1.06)^{3 /}(1.02)^{5}$, which solves for $i_{\text {real }}=3.13 \%$
119. A person invests in a fund earning interest at $j_{2}=6 \%$. The annual rate of inflation is 2% in year $1,2.5 \%$ in year 2 , and 3.0% in year 3 . What is the annual real interest rate, compounded once a year, earned over the 3-year period?
A. 3.42%
B. 3.47%
C. 3.50%
D. 3.59%
$\left(1+i_{\text {real }}\right)^{3}=(1.03)^{6} /(1.02)(1.025)(1.03)$, which solves for $i_{\text {real }}=3.50 \%$
120. Population growth in a given urban city was 4% for the calendar years 2003 to 2007 inclusive and 3% for the calendar years 2008 to 2010 inclusive. If the population of this city was 664,735 on December 31, 2010, what was the population of this city on December 31, 2002?
A. 500,000
B. 512,193
C. 515,000
D. 520,000
$P=664,735(1.04)^{-5}(1.03)^{-3}=500,000$
121. Jack invested $\$ 1200$ into an account for 5 -years with interest at $\mathrm{j}_{2}=6 \%$. If the annual inflation rate is 2% for the first 2 -years and 2.5% thereafter, what is the annual real rate of interest earned over the 5 -years?
A. 3.71%
B. 1.96%
C. 3.13%
D. 2.94%
$\left(1+i_{\text {real }}\right)^{5}=(1.03)^{10 /\left[(1.02)^{2}(1.025)^{3}\right] \text {, which solves for } i_{\text {real }}=3.71 \% ~}$
122. The amount of clover on a lawn grows exponentially at a rate of j_{24} (compounded twice a month) such that it doubles every 6-months. If there are 5000 pieces of clover in your lawn today, how many did you have 4-months ago? (Answer to the nearest piece of clover)
A. 1984
B. 3150
C. 3333
D. 3969
$\left(1+j_{2} / 24\right)^{12}=2$, which solves for $i=j_{24} / 24=0.059463094$ per 2-month period
Thus, $5000(1.05943094)^{-8}=3149.8=3150$
123. How much money do you need today in order to have $\$ 3000$ in 21 months time, if interest is compounded continuously at 9% ?
A. $\$ 2741.79$
B. $\$ 2564.34$
C. $\$ 2562.83$
D. $\$ 453.22$
$\mathrm{A}=3000 e^{-0.09(21 / 12)}=3000 e^{-0.1575}=\$ 2562.83$
124. You deposit $\$ 10,000$ today in a fund earning interest at $j_{x}=8 \%$. How much will you have accumulated at the end of 21 months?
A. $\$ 11,502.74$
B. $\$ 11,497.40$
C. $\$ 11,441.73$
D. $\$ 10,832.87$
$S=10,000 e^{0.08(21 / 12)}=10,000 e^{0.14}=\$ 11,502 \cdot 74$
125. You are investing a sum of money. Rank the following interest in order of which one will give you the most interest.
a. $j_{2}=8 \%$
b. $j_{52}=7.9 \%$
c. $\delta=j_{\infty}=7.85 \%$
A. $b>a>c$
B. $a>c>b$
C. $c>a>b$
D. $b>c>a$
a. $j_{1}=(1.04)^{2}-1=8.160 \%$
b. $j=(1+0.079 / 52)^{52}-1=8.214 \%$
c. $j_{1}=e^{0.0785}-1=8.166 \%$

Thus, $\mathrm{b}>\mathrm{c}>\mathrm{a}$
126. You plan to invest $\$ P$ today for 15 months, at which time you wish to $\$ 15,000$. What is the value of P if you can earn interest at 7% compounded continuously?
A. $\$ 13,743.28$
B. $\$ 13,746.78$
C. $\$ 13,783.56$
D. $\$ 13,985.91$
$P=15,000 e^{-0.07(15 / 12)}=\$ 13,743.28$

Accessibility: Keyboard Navigation Brown - Chapter 02 \#126

Difficulty: Easy
Section: 02-09
127. You wish to have $\$ 10,00045$ months from now. To accomplish this goal, you deposit $\$ P$ in an account today paying interest continuously at $j_{x}=8 \%$. What is P ?
A. $\$ 9,231.16$
B. $\$ 7408.18$
C. $\$ 7415.56$
D. $\$ 7493.09$
$P=10,000 e^{-0.08(45 / 12)}=\$ 7408.18$
128. What is the value, in 18 months, of an investment of $\$ 10,000$ made today if interest is compounded continuously at 6.5% ?
A. $\$ 32,219.93$
B. $\$ 11,024.11$
C. $\$ 11,021.21$
D. $\$ 10,987.96$
$S=10,000 e^{0.065(18 / 12)}=\$ 11,024.11$
129. What nominal interest rate compounded continuously is equivalent to 10% compounded quarterly?
A. 9.53%
B. 9.75%
C. 9.88%
D. 10.38%
$(1.025)^{4}=e^{\delta}$ Solves for $\delta=4 \ln (1.025)=9.88 \%$

2 Summary

Category

\# of Questions
Accessibility: Keyboard Navigation 129
Brown - Chapter 02 129
Difficulty: Easy 64
Difficulty: Hard 16
Difficulty: Medium 49
Section: 02-01 9
Section: 02-02 11
Section: 02-03 7
Section: 02-04 23
Section: 02-05 23
Section: 02-06 16
Section: 02-07 17
Section: 02-08 16
Section: 02-09 7

